• 제목/요약/키워드: Indexing Model

검색결과 169건 처리시간 0.028초

디지털 도서관을 위한 소셜 태깅의 의미: 이용자 협력을 활용한 디지털 지식 생성 (Implications of Social Tagging for Digital Libraries: Benefiting from User Collaboration in the Creation of Digital Knowledge)

  • 최윤선
    • 정보관리학회지
    • /
    • 제27권2호
    • /
    • pp.225-239
    • /
    • 2010
  • 본 연구는 이용자 협력에 의한 소셜 태깅(social tagging)이 웹 자원을 위한 디지털 지식 생성에 활용될 수 있으며, 태깅의 양질성(quality)과 효율성이 실증적으로 증명될 수 있는가를 다루었다. 이 논고는 특별히 소셜 태깅의 색인 일관성(indexing consistency)을 평가하고 전문가들의 색인 일관성과 비교하여 분석하였다. 많은 수의 색인자들 간의 색인 일관성을 측정하기 위해 벡터 공간 모델(Vector Space Model)에 기반한 두 가지의 유사성 측정 공식을 사용하였다. 본 연구는 웹자원 관리에 있어서 소셜 태깅의 활용성 증진에 공헌하며, 디지털 도서관 환경에서 새롭게 생성되는 자료들에 대한 보다 적합한 어휘를 개발하는 데에 있어 소셜 지식을 적극적으로 수용할 필요가 있다고 주장한다. 또한 두 가지 공식에 의한 비교분석은 두 공식에서의 비슷한 색인 경향을 보여주면서 보다 신뢰적인 결과를 제공하였다.

XML 문서의 구조기반 검색성능 평가 (Performance Evaluation on Structure-based Retrievals of XML Documents)

  • 김수희
    • 한국산학기술학회논문지
    • /
    • 제10권2호
    • /
    • pp.396-406
    • /
    • 2009
  • 이 논문에서는 XML 문서의 효율적인 구조검색을 위하여 기존의 연구에 이어 엘리먼트들의 순서를 명시하는 메타데이터들을 추가로 개발하였고, 이들을 바탕으로 구조기반 인덱싱 모델을 설계하였다. 설계한 구조검색 인덱스들은 문서의 계층구조에서 수직관계에 있는 엘리먼트들 뿐만 아니라 수평관계에 있는 엘리먼트들을 효율적으로 검색할 수 있게 한다. 제안한 구조기반 인덱스의 성능을 평가하기 위해 프로토타입 XML 문서 검색 시스템 개발하였고, XML 코퍼스를 대상으로 검색 실험을 수행하였다. 자손검색, 조상검색, 형제검색에서 ETID 모델보다 평균 검색 시간이 약 12% 정도 향상되었으며, 특정 엘리먼트 타입의 순서를 명시한 검색에서는 평균 검색 시간이 ETID 모델보다 25% 이상의 향상률을 보였다. 이것은 이 논문에서 제시한 Etype, Asso, LSSO를 이용한 검색이 엘리먼트의 순서를 명시한 검색 성능 향상에 큰 기여를 한 것으로 분석된다.

시계열 데이터베이스에서 복수의 모델을 지원하는 모양 기반 서브시퀀스 검색 (Shape-Based Subsequence Retrieval Supporting Multiple Models in Time-Series Databases)

  • 원정임;윤지희;김상욱;박상현
    • 정보처리학회논문지D
    • /
    • 제10D권4호
    • /
    • pp.577-590
    • /
    • 2003
  • 모양 기반 검색이란 실제 요소 값과 관계없이 질의 시퀀스와 유사한 모양을 갖는 시퀀스(서브시퀀스)를 데이터베이스 내에서 검색하여 내는 연산이다. 본 논문에서는 시계열 데이터베이스에서의 모양 기반 검색을 위한 유연성 있는 새로운 유사 모델을 정의하고, 이 유사 모델을 지원하기 위한 인덱싱 및 질의 처리 방안을 제시한다. 제안된 유사 모델에서는 정규화, 이동 평균, 타임 워핑 등 다양한 변환을 지원한다. 특히 최종 유사 정도를 계산하기 위하여 사용되는$L_p$거리 함수론 사용자가 임의로 지정하도록 함으로써 응용에서 선호하는 유사 모델을 반영할 수 있다. 또한 이러한 모양 기반 검색을 효과적으로 지원하기 위한 압축된 서브시퀀스 트리 구조를 제안하고, 이를 기반으로 하는 효율적인 질의 처리 기법을 제시한다. 실험 결과에 의하면 제안된 기법은 진의 시퀀스와 모양이 유사한 서브시퀀스들을 사용자에 의하여 선택된 거리 함수를 사용하여 성공적으로 검색할 뿐 아니라, 순차 검색과 비교하여 거리 함수 선택에 따라 수 십배에서 수 백배까지의 성능 개선 효과를 갖는 것으로 나타났다.

객체지향 지리정보 데이터베이스를 위한 색인기법 (An Indexing Technique for Object-Oriented Geographical Databases)

  • 부기동
    • 한국지역지리학회지
    • /
    • 제3권2호
    • /
    • pp.105-120
    • /
    • 1997
  • 객체지향 지리정보 데이타베이스 시스템의 설계시 중요한 고려 사항은 저장된 데이타에 대한 좋은 접근 전략을 갖도록 하는 것이다. 객체지향 시스템에서는 이러한 목적으로 여러가지 색인 기법이 개발되었으나, 이러한 기법들은 객체지향 데이타 모델의 집단화 계층이나 상속 계층 중 어느 한 가지만을 고려하는 경우가 대부분이었다. 본 연구에서는 포인터 체인 디렉토리를 이용하여 객체지향 지리 데이터베이스의 집단화 및 상속 계층을 접근하는 데 효율적인 색인 기법을 제안하였다. 제안된 기법의 효용성을 기존의 색인 기법들과 다양하게 비교하였으며, 저장비용과 검색비용 측면에서 그 성능을 시뮬레이션한 결과를 제시하였다.

  • PDF

효과적인 도로 상황 인지를 위한 도로 객체 그래프 모델링 방법 (Road Object Graph Modeling Method for Efficient Road Situation Recognition)

  • ;정성모;송석일
    • Journal of Platform Technology
    • /
    • 제9권4호
    • /
    • pp.3-9
    • /
    • 2021
  • 이 논문에서는 차량 또는 도로 인프라 센서에 의해 검출된 도로상의 각 객체들 간의 상황인지를 효과적으로 하기 위해서 그래프 데이터 모델을 도입한다. 제안하는 방법은 도로상의 각 객체들을 그래프의 정점(Vertex)로, 객체들 간의 관계를 그래프의 간선(Edge)로 모델링하여 그래프 데이터베이스를 구축하고, 객체의 속성과 간선의 속성을 실시간으로 업데이트한다. 이때 간선으로 표현되는 객체들 간의 관계는 각 객체의 위치, 이동방향, 이동속도 등을 고려하여 객체들 간에 근접 가능성이 있을 경우 설정한다. 또한, 제안하는 그래프 모델링 방법을 통해 표현한 도로 객체 그래프 데이터베이스를 실시간으로 업데이트하기 위해 그래프 정점과 간선에 대한 공간 색인 기법을 제안한다. 제안하는 색인기법 기반의 그래프 데이터베이스 업데이트 성능을 평가하기 위해서 색인 없이 업데이트하는 방법과 비교하였으며 비교결과 제안하는 방법이 10배 더 빠르게 업데이트를 할 수 있음을 확인하였다.

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.

MPEG-7 시각 정보 기술자의 인덱싱 및 결합 알고리즘 (Algorithms for Indexing and Integrating MPEG-7 Visual Descriptors)

  • 송치일;낭종호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문에서는 MPEG-7 시각 정보 기술자인 Dominant Color와 Contour Shape 기술자에 대한 새로운 인덱싱 알고리즘을 제안한다. Dominant Color 기술자에서 사용되는 비교 연산 식은 가우스 혼합 모델에 기초하고 있기 때문에 기술자의 각 속성들을 하나의 칼라 히스토그램 형태로 변형시켜서 인덱스로 사용한다. Contour Shape 기술자는 두 단계 형태의 알고리즘을 사용하는데, 첫 번째 단계에서는 글로벌 변수인 Eccentricity와 Circularity를 사용한 대략적인 비교를 통해서 비슷하지 않은 이미지 오브젝트를 배제시키고 두 번째 단계에서 남겨진 오브젝트들과 질의 오브젝트들간의 Peak 변수를 사용한 비교 연산을 통해 인덱싱을 수행한다. 또한 본 논문은 효율적인 멀티미디어 데이타 검색을 위해서 두 가지의 MPEG-7 시각 정보 기술자 결합 알고리즘을 제안한다. 첫 번째 결합 알고리즘은 가중치를 확률로 변환해서 반영하는 것이고 두 번째는 가중치를 각 비교 연산 결과값의 중요도로 간주하는 방법이다. 실험을 통해서 결과를 분석해 보면 근사화를 통한 인덱스 생성으로 100%의 정확도를 유지 할 수는 없지만 논문에서 제안된 각 기술자의 인덱싱 알고리즘과 기술자들의 결합 알고리즘은 기본 검색 알고리즘과 비교했을 때 매우 빠른 속도 향상을 보여주었다. 본 논문에서 제안된 알고리즘은 MPEG-7을 사용하는 검색 시스템의 데이타베이스 구축에 효율적으로 사용될 수 있다.

The Study On the Effectiveness of Information Retrieval in the Vector Space Model and the Neural Network Inductive Learning Model

  • Kim, Seong-Hee
    • 정보기술과데이타베이스저널
    • /
    • 제3권2호
    • /
    • pp.75-96
    • /
    • 1996
  • This study is intended to compare the effectiveness of the neural network inductive learning model with a vector space model in information retrieval. As a result, searches responding to incomplete queries in the neural network inductive learning model produced a higher precision and recall as compared with searches responding to complete queries in the vector space model. The results show that the hybrid methodology of integrating an inductive learning technique with the neural network model can help solve information retrieval problems that are the results of inconsistent indexing and incomplete queries--problems that have plagued information retrieval effectiveness.

  • PDF

휘도투시모델을 적용한 효율적인 비디오 검색기법 (Efficient Video Retrieval Scheme with Luminance Projection Model)

  • 김상현
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8649-8653
    • /
    • 2015
  • 대용량 비디오 데이터베이스들을 효율적으로 관리하기 위해 많은 비디오 색인 및 검색 알고리즘들이 제안되고 있다. 비디오 콘텐츠 관리 시스템에서 비디오 유사도 측정방법은 가장 중요한 기술적 요소 중 하나이다. 본 논문에서는 비디오 유사도를 효율적으로 측정하기 위해 휘도특성 모델을 제안한다. 비디오 색인에 관한 대부분의 알고리즘들이 공통적으로 히스토그램, 윤곽선, 움직임 특성을 사용한 반면 본 논문에서 제안한 알고리즘은 휘도투시를 사용한 효율적인 유사도 측정법을 적용하였다. 비디오 시퀀스의 효율적인 색인과 계산량 감소를 위해 누적된 유사도에 의해 추출된 키프레임 들을 이용한 비디오 유사도를 계산하고 수정된 하우스도르프 거리를 사용하여 키프레임 묶음들을 비교하였다. 실험결과 제안한 휘도투시 모델이 적은 계산량으로 기존의 히스토그램 비교법을 사용한 알고리즘에 비해 현저히 향상된 정확도 및 성능을 보였다.