본 연구는 이용자 협력에 의한 소셜 태깅(social tagging)이 웹 자원을 위한 디지털 지식 생성에 활용될 수 있으며, 태깅의 양질성(quality)과 효율성이 실증적으로 증명될 수 있는가를 다루었다. 이 논고는 특별히 소셜 태깅의 색인 일관성(indexing consistency)을 평가하고 전문가들의 색인 일관성과 비교하여 분석하였다. 많은 수의 색인자들 간의 색인 일관성을 측정하기 위해 벡터 공간 모델(Vector Space Model)에 기반한 두 가지의 유사성 측정 공식을 사용하였다. 본 연구는 웹자원 관리에 있어서 소셜 태깅의 활용성 증진에 공헌하며, 디지털 도서관 환경에서 새롭게 생성되는 자료들에 대한 보다 적합한 어휘를 개발하는 데에 있어 소셜 지식을 적극적으로 수용할 필요가 있다고 주장한다. 또한 두 가지 공식에 의한 비교분석은 두 공식에서의 비슷한 색인 경향을 보여주면서 보다 신뢰적인 결과를 제공하였다.
이 논문에서는 XML 문서의 효율적인 구조검색을 위하여 기존의 연구에 이어 엘리먼트들의 순서를 명시하는 메타데이터들을 추가로 개발하였고, 이들을 바탕으로 구조기반 인덱싱 모델을 설계하였다. 설계한 구조검색 인덱스들은 문서의 계층구조에서 수직관계에 있는 엘리먼트들 뿐만 아니라 수평관계에 있는 엘리먼트들을 효율적으로 검색할 수 있게 한다. 제안한 구조기반 인덱스의 성능을 평가하기 위해 프로토타입 XML 문서 검색 시스템 개발하였고, XML 코퍼스를 대상으로 검색 실험을 수행하였다. 자손검색, 조상검색, 형제검색에서 ETID 모델보다 평균 검색 시간이 약 12% 정도 향상되었으며, 특정 엘리먼트 타입의 순서를 명시한 검색에서는 평균 검색 시간이 ETID 모델보다 25% 이상의 향상률을 보였다. 이것은 이 논문에서 제시한 Etype, Asso, LSSO를 이용한 검색이 엘리먼트의 순서를 명시한 검색 성능 향상에 큰 기여를 한 것으로 분석된다.
모양 기반 검색이란 실제 요소 값과 관계없이 질의 시퀀스와 유사한 모양을 갖는 시퀀스(서브시퀀스)를 데이터베이스 내에서 검색하여 내는 연산이다. 본 논문에서는 시계열 데이터베이스에서의 모양 기반 검색을 위한 유연성 있는 새로운 유사 모델을 정의하고, 이 유사 모델을 지원하기 위한 인덱싱 및 질의 처리 방안을 제시한다. 제안된 유사 모델에서는 정규화, 이동 평균, 타임 워핑 등 다양한 변환을 지원한다. 특히 최종 유사 정도를 계산하기 위하여 사용되는$L_p$거리 함수론 사용자가 임의로 지정하도록 함으로써 응용에서 선호하는 유사 모델을 반영할 수 있다. 또한 이러한 모양 기반 검색을 효과적으로 지원하기 위한 압축된 서브시퀀스 트리 구조를 제안하고, 이를 기반으로 하는 효율적인 질의 처리 기법을 제시한다. 실험 결과에 의하면 제안된 기법은 진의 시퀀스와 모양이 유사한 서브시퀀스들을 사용자에 의하여 선택된 거리 함수를 사용하여 성공적으로 검색할 뿐 아니라, 순차 검색과 비교하여 거리 함수 선택에 따라 수 십배에서 수 백배까지의 성능 개선 효과를 갖는 것으로 나타났다.
객체지향 지리정보 데이타베이스 시스템의 설계시 중요한 고려 사항은 저장된 데이타에 대한 좋은 접근 전략을 갖도록 하는 것이다. 객체지향 시스템에서는 이러한 목적으로 여러가지 색인 기법이 개발되었으나, 이러한 기법들은 객체지향 데이타 모델의 집단화 계층이나 상속 계층 중 어느 한 가지만을 고려하는 경우가 대부분이었다. 본 연구에서는 포인터 체인 디렉토리를 이용하여 객체지향 지리 데이터베이스의 집단화 및 상속 계층을 접근하는 데 효율적인 색인 기법을 제안하였다. 제안된 기법의 효용성을 기존의 색인 기법들과 다양하게 비교하였으며, 저장비용과 검색비용 측면에서 그 성능을 시뮬레이션한 결과를 제시하였다.
이 논문에서는 차량 또는 도로 인프라 센서에 의해 검출된 도로상의 각 객체들 간의 상황인지를 효과적으로 하기 위해서 그래프 데이터 모델을 도입한다. 제안하는 방법은 도로상의 각 객체들을 그래프의 정점(Vertex)로, 객체들 간의 관계를 그래프의 간선(Edge)로 모델링하여 그래프 데이터베이스를 구축하고, 객체의 속성과 간선의 속성을 실시간으로 업데이트한다. 이때 간선으로 표현되는 객체들 간의 관계는 각 객체의 위치, 이동방향, 이동속도 등을 고려하여 객체들 간에 근접 가능성이 있을 경우 설정한다. 또한, 제안하는 그래프 모델링 방법을 통해 표현한 도로 객체 그래프 데이터베이스를 실시간으로 업데이트하기 위해 그래프 정점과 간선에 대한 공간 색인 기법을 제안한다. 제안하는 색인기법 기반의 그래프 데이터베이스 업데이트 성능을 평가하기 위해서 색인 없이 업데이트하는 방법과 비교하였으며 비교결과 제안하는 방법이 10배 더 빠르게 업데이트를 할 수 있음을 확인하였다.
Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.
Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.
본 논문에서는 MPEG-7 시각 정보 기술자인 Dominant Color와 Contour Shape 기술자에 대한 새로운 인덱싱 알고리즘을 제안한다. Dominant Color 기술자에서 사용되는 비교 연산 식은 가우스 혼합 모델에 기초하고 있기 때문에 기술자의 각 속성들을 하나의 칼라 히스토그램 형태로 변형시켜서 인덱스로 사용한다. Contour Shape 기술자는 두 단계 형태의 알고리즘을 사용하는데, 첫 번째 단계에서는 글로벌 변수인 Eccentricity와 Circularity를 사용한 대략적인 비교를 통해서 비슷하지 않은 이미지 오브젝트를 배제시키고 두 번째 단계에서 남겨진 오브젝트들과 질의 오브젝트들간의 Peak 변수를 사용한 비교 연산을 통해 인덱싱을 수행한다. 또한 본 논문은 효율적인 멀티미디어 데이타 검색을 위해서 두 가지의 MPEG-7 시각 정보 기술자 결합 알고리즘을 제안한다. 첫 번째 결합 알고리즘은 가중치를 확률로 변환해서 반영하는 것이고 두 번째는 가중치를 각 비교 연산 결과값의 중요도로 간주하는 방법이다. 실험을 통해서 결과를 분석해 보면 근사화를 통한 인덱스 생성으로 100%의 정확도를 유지 할 수는 없지만 논문에서 제안된 각 기술자의 인덱싱 알고리즘과 기술자들의 결합 알고리즘은 기본 검색 알고리즘과 비교했을 때 매우 빠른 속도 향상을 보여주었다. 본 논문에서 제안된 알고리즘은 MPEG-7을 사용하는 검색 시스템의 데이타베이스 구축에 효율적으로 사용될 수 있다.
This study is intended to compare the effectiveness of the neural network inductive learning model with a vector space model in information retrieval. As a result, searches responding to incomplete queries in the neural network inductive learning model produced a higher precision and recall as compared with searches responding to complete queries in the vector space model. The results show that the hybrid methodology of integrating an inductive learning technique with the neural network model can help solve information retrieval problems that are the results of inconsistent indexing and incomplete queries--problems that have plagued information retrieval effectiveness.
대용량 비디오 데이터베이스들을 효율적으로 관리하기 위해 많은 비디오 색인 및 검색 알고리즘들이 제안되고 있다. 비디오 콘텐츠 관리 시스템에서 비디오 유사도 측정방법은 가장 중요한 기술적 요소 중 하나이다. 본 논문에서는 비디오 유사도를 효율적으로 측정하기 위해 휘도특성 모델을 제안한다. 비디오 색인에 관한 대부분의 알고리즘들이 공통적으로 히스토그램, 윤곽선, 움직임 특성을 사용한 반면 본 논문에서 제안한 알고리즘은 휘도투시를 사용한 효율적인 유사도 측정법을 적용하였다. 비디오 시퀀스의 효율적인 색인과 계산량 감소를 위해 누적된 유사도에 의해 추출된 키프레임 들을 이용한 비디오 유사도를 계산하고 수정된 하우스도르프 거리를 사용하여 키프레임 묶음들을 비교하였다. 실험결과 제안한 휘도투시 모델이 적은 계산량으로 기존의 히스토그램 비교법을 사용한 알고리즘에 비해 현저히 향상된 정확도 및 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.