• 제목/요약/키워드: Index of dispersion

검색결과 294건 처리시간 0.022초

A Proposal of Simplified Eigenvalue Equation for an Analysis of Dielectric Slab Waveguide

  • Choi Young-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.381-386
    • /
    • 2006
  • In dielectric waveguide analysis and synthesis, we often encounter an awkward task of solving the eigenvalue equation to find the value of propagation constant. Since the dispersion equation is an irrational equation, we cannot solve it directly. Taking advantage of approximated calculation, we attempt here to solve this irrational dispersion equation. A new type of eigenvalue equation, in which guide index is expressed as a function of frequency, has been developed. In practical optical waveguide designing and in calculating the propagation mode, this equation will be used more conveniently than the previous one. To expedite the design of the waveguide, we then solve the eigenvalue equation of a slab waveguide, which is sufficiently accurate for practical purpose.

Photonic Bandgap Bragg Fibers: A New Platform for Realizing application-specific Specialty Optical Fibers and Components

  • Pal, Bishnu P.
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2006년도 동계학술발표회 논문집
    • /
    • pp.87-88
    • /
    • 2006
  • Bragg fibers, consisting of a low index core (including air) surrounded by a series of periodic layers of alternate high and low refractive index materials, each being higher than that of the core, form a 1D photonic bandgap (PBG). In view of the multitude of individual physical parameters that characterize a Bragg fiber, they offer a wide choice of parametric avenues to tailor their propagation characteristics. Owing to their unique PBG guidance mechanism, Bragg fibers indeed exhibit unusual dispersion characteristics that are otherwise nearly impossible to achieve in conventional silica fibers. Solid core Bragg fibers, amenable to fabrication by the highly mature MCVD technology, could be designed to realize broadband supercontinuum light. This talk would review our recent works on modeling of propagation characteristics, dispersion tailoring in them for applications as metro as well as dispersion compensating fibers and also as supercontinuum light generators.

  • PDF

Magnus Rotor형 분산자탄 탄착군의 분산 균일도 평가 (Evaluation of The Dispersion Uniformity of Footprint of The Magnus Rotor Type Dispersive Submunition)

  • 사공현규
    • 한국군사과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.230-237
    • /
    • 2024
  • Dispersion munitions are often equipped with dispersive submunitions used to scatter bombs over a wide area, and one of the types of dispersive submunitions is the Magnus rotor, commonly referred to as a self-rotating flying body. The Magnus rotor is designed to be dispered over a wide area by utilizing the principle of the Magnus effect through self-rotation, and has various trajectories depending on the initial conditions from the mother dispersion munition. In this paper, an index to evaluate the dispersion uniformity of footprint of the dispersive submunition is presented and the dispersion uniformity according to various initial release conditions is evaluated, and it is getting larger with high incidence angle and get max value at certain initial angular velocity.

A Comparison of the Results from Somatotype Evaluation with Different Evaluation Tools

  • Choi, Wan-Suk;Choi, Jung-Hyun;Cho, Mi-Suk;Moon, Ok-Kon;Park, Joo-Hyun;Chung, Hyung-Kuk;Lee, Suk-Hee;Lee, Jung-Sook;Min, Kyung-Ok
    • 국제물리치료학회지
    • /
    • 제1권1호
    • /
    • pp.65-72
    • /
    • 2010
  • Supposing that somatotype evaluation results would have significant differences between the public group with less amounts of exercises and the special group with intensive exercises for three to four times a day, this study aimed at comparing the mutual consistency between the results determined by somatotype evaluation tools such as visually calculated index(VCI), R$\ddot{o}$hrer's Index(RI) and Body Mass Index(BMI). The public, taekwondo players and judo players groups were composed of fifty persons, taekwondo players and judo players passed through VCI determination, respectively. Their height and weight were examined and analyzed with somatotype evaluation tools. Comparison of somatotype dispersion of RI and VCI showed that most women were determined by VCI as lean type but were determined by RI as normal type. And that women were determined by VCI as fat type but were determined by RI as normal type. Therefore both men and women showed significant differences in VCI and RI. Comparison of somatotype dispersion of VCI and BMI showed that both men and women were overestimated or underestimated by VCI rather than by BMI. Comparison of somatotype dispersion of RI and BMI showed that men were less determined by BMI as lean type compared with women; both men and women less determined by BMI rather than by RI as normal type; and both men and women, in particular, were more determined by BMI as fat type but men were more determined by BMI rather than by RI as fat type. Total somatotype consistency by tools showed that VCI has the greatest possibility of determining the public group, compared with other groups as lean type and that the consistency of the three tools were relatively higher for the taekwondo players and judo players groups, compared with the public.

  • PDF

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion

  • Kim, Myunghwan;Kim, Soeun
    • Current Optics and Photonics
    • /
    • 제3권4호
    • /
    • pp.298-303
    • /
    • 2019
  • We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.

Near-elliptic Core Triangular-lattice and Square-lattice PCFs: A Comparison of Birefringence, Cut-off and GVD Characteristics Towards Fiber Device Application

  • Maji, Partha Sona;Chaudhuri, Partha Roy
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.207-216
    • /
    • 2014
  • In this work, we report detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs); where we numerically characterize the birefringence, single mode, cut-off behavior and group velocity dispersion and effective area properties. By varying geometry and examining the modal field profile we find that for the same relative values of $d/{\Lambda}$, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction ($d/{\Lambda}$). Dispersion comparison between the two structures reveal that we need smaller lengths of triangular-lattice PCF for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show zero dispersion wavelength (ZDW) red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length ($L_D$) and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. We have also performed a comparison of the dispersion properties of between the symmetric-core and asymmetric-core triangular-lattice PCF. While we need smaller length of symmetric-core PCF for dispersion compensation, broadband dispersion compensation can be performed with asymmetric-core PCF. Mid-Infrared (IR) SCG can be better performed with asymmetric core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for designing/realizing fiber towards a custom application around these characteristics.

Effect of Fiber Dispersion and Self-phase Modulation in Multi-channel Subcarrier Multiplexed Optical Signal Transmission

  • Kim, Kyoung-Soo;Jeong, Ji-Chai;Lee, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.351-356
    • /
    • 2010
  • We investigated the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) in multi-channel subcarrier multiplexed (SCM) optical transmission systems. We theoretically analyzed the transmission characteristics of the SCM signals with the effect of SPM and chromatic dispersion in a single-mode optical fiber by numerical simulations based on the nonlinear Schrodinger equation. The numerical simulation results revealed that the effect of fiber dispersion and SPM could occur independently between subcarrier channels in two-channel SCM systems for small optical modulation index (OMI) and large channel spacing. However, for large OMI, small channel spacing, and large fiber launching power, we found a performance degradation of the two-channel system compared to that of a single-channel system. These parameters are therefore important for the optimization of multi-channel SCM systems applicable to radio over fiber networks.

Analysis on Transition between Index- and Bandgap-guided Modes in Photonic Crystal Fiber

  • Hong, Kee Suk;Lim, Sun Do;Park, Hee Su;Kim, Seung Kwan
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.733-738
    • /
    • 2016
  • We calculate optical properties of guided modes of a hybrid-guiding photonic crystal fiber. The design and modeling of such hybrid-guiding PCF is made by replacing air holes with inserts of high refractive index material layer by layer in order. The optical properties such as mode intensity profile, mode dispersion, optical birefringence, confinement loss, and chromatic dispersion during transition of the guiding mechanism are analyzed and discussed. The guided modes in the hybrid-guiding region are also compared with those of reference index-guiding and bandgap-guiding photonic crystal fibers.

점도 및 침전지수에 의한 액상화 레드머드의 분산 특성평가 (Evaluation of Dispersion Characteristics for Liquefied Red Mud by Viscosity and Sediment Index)

  • 강석표;강혜주
    • 한국건축시공학회지
    • /
    • 제17권6호
    • /
    • pp.517-525
    • /
    • 2017
  • 레드머드(Red mud)는 보오크사이트 원광석으로부터 수산화알루미늄($Al(OH)_3$) 및 산화알루미늄($Al_2O_3$)을 제조하는 공정에서 발생되는 산업부산물로 Bayer Process를 통하여 함수율 50%의 슬러지 상태로 국내에서 연간 약 30만톤이 발생되고 있다. 본 논문에서는 함수율 50%의 레드머드 슬러지를 가열 공정없이 건설산업 현장에 사용할 수 있도록 적정 혼합수 및 첨가제를 사용하여 액상화하고 점도, 입도, 침전지수와 같은 분산특성을 검토하였다. 본 논문의 범위에 한정하여 액상화 레드머드의 안정적인 분산을 위해서는 초기 점도를 2000cP에서 8000cP을 적용하고 목표 침전지수를 20%이하로 설정하는 것이 타당할 것으로 사료된다.

굴절률 분산을 반영한 고속 푸리에 변환 및 막두께 정밀결정 (Application of the modified fast fourier transformation weighted with refractive index dispersion far an accurate determination of film thickness)

  • 김상준;김상열
    • 한국광학회지
    • /
    • 제14권3호
    • /
    • pp.266-271
    • /
    • 2003
  • $\mu\textrm{m}$ 이상의 두께를 가지는 비교적 두꺼운 박막의 경우 박막에 의한 간섭효과로 인하여 나타나는 반사율 스펙트럼에서의 진동주기로부터 막의 두께를 얻는다. 대개 빠른 데이터 처리를 위해서 고속 푸리에 변환(Fast Fourier Transformation, FFI)을 사용하여 진동주기(또는 진동수)를 구한다. 본 연구에서는 반사율 또는 투과율 스펙트럼을 빛의 에너지 축상에서 푸리에 변환하는 종래의 방법을 개선하여 박막의 굴절률 분산을 반영하는 수정된 고속 푸리에 변환 방법을 최초로 도입하였다. 이 새로운 방법은 굴절률 분산에서 유래하는 유효굴절률 결정에서의 오차를 줄여주고 푸리에 변환 피크의 폭 넓어짐을 막아줌으로써 막 두께 결정의 정밀도를 크게 향상시킨다. 수정된 고속 푸리에 변환방법을 80 $\mu\textrm{m}$의 덮게층과 13 $\mu\textrm{m}$의 사이층이 있는 시료의 반사 스펙트럼에 적용하여 고 타당성을 확인하였다.