• Title/Summary/Keyword: Index machine

Search Result 551, Processing Time 0.029 seconds

Estimation of Cerchar abrasivity index based on rock strength and petrological characteristics using linear regression and machine learning (선형회귀분석과 머신러닝을 이용한 암석의 강도 및 암석학적 특징 기반 세르샤 마모지수 추정)

  • Ju-Pyo Hong;Yun Seong Kang;Tae Young Ko
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.39-58
    • /
    • 2024
  • Tunnel Boring Machines (TBM) use multiple disc cutters to excavate tunnels through rock. These cutters wear out due to continuous contact and friction with the rock, leading to decreased cutting efficiency and reduced excavation performance. The rock's abrasivity significantly affects cutter wear, with highly abrasive rocks causing more wear and reducing the cutter's lifespan. The Cerchar Abrasivity Index (CAI) is a key indicator for assessing rock abrasivity, essential for predicting disc cutter life and performance. This study aims to develop a new method for effectively estimating CAI using rock strength, petrological characteristics, linear regression, and machine learning. A database including CAI, uniaxial compressive strength, Brazilian tensile strength, and equivalent quartz content was created, with additional derived variables. Variables for multiple linear regression were selected considering statistical significance and multicollinearity, while machine learning model inputs were chosen based on variable importance. Among the machine learning prediction models, the Gradient Boosting model showed the highest predictive performance. Finally, the predictive performance of the multiple linear regression analysis and the Gradient Boosting model derived in this study were compared with the CAI prediction models of previous studies to validate the results of this research.

A Study on the Establishment of Insulation Diagnosis Cycle for High Voltage Rotating Machine (고압회전기 절연진단 주기 설정에 관한 연구)

  • Lee, Young-Jun;Kim, Hee-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1939-1941
    • /
    • 2000
  • Nondestructive and destructuve insulation tests were performed the high voltage rotating machine in the local thermal power plants. Nondestructive tests include measurements of insulation resistance. polarization index, AC current. tan$\delta$, partial discharge. Destructive tests include measurements of AC hipot and DC hipot. This paper propose to establish the insulation diagnosis cycle for high voltage rotating machine.

  • PDF

A Study on the Safety Index Service Model by Disaster Sector using Big Data Analysis (빅데이터 분석을 활용한 재해 분야별 안전지수 서비스 모델 연구)

  • Jeong, Myoung Gyun;Lee, Seok Hyung;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.682-690
    • /
    • 2020
  • Purpose: This study builds a database by collecting and refining disaster occurrence data and real-time weather and atmospheric data. In conjunction with the public data provided by the API, we propose a service model for the Big Data-based Urban Safety Index. Method: The plan is to provide a way to collect various information related to disaster occurrence by utilizing public data and SNS, and to identify and cope with disaster situations in areas of interest by real-time dashboards. Result: Compared with the prediction model by extracting the characteristics of the local safety index and weather and air relationship by area, the regional safety index in the area of traffic accidents confirmed that there is a significant correlation with weather and atmospheric data. Conclusion: It proposed a system that generates a prediction model for safety index based on machine learning algorithm and displays safety index by sector on a map in areas of interest to users.

Experimental Study for Investigating the Optimum Operating Conditions of a Seawater Ice Machine (해수제빙장치의 최적 운전 조건 탐색을 위한 실험적 연구)

  • Li, H.;Joo, W.J.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.76-82
    • /
    • 2010
  • This paper investigates the optimum operating conditions to construct total automatic control system with high energy efficiency of a newly developed seawater ice machine. The machine has an electronic expansion valve(EEV) and a variable speed rotating drum with an evaporator installed inside. The coefficient of performance(COP) was used as an index to evaluate energy efficiency of the machine. At first, the opening angle of EEV was adjusted to obtain COP of the machine at a constant speed of the drum. Then, we checked seawater ice product versus opening angles of the EEV. Finally, effect of drum's rotating speed in response to product of seawater ice and seawater ice temperature were considered.

Auto-Walking Training After Incomplete Spinal Cord Injury (불완전 척수손상 후의 자동보행훈련)

  • Jeong, Jae-Hoon
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.81-90
    • /
    • 2003
  • This study was conducted to assess the effects of the gait training method in incomplete spinal cord injured persons using an auto-walking machine. Persons with incomplete spinal cord injury level C or D on the American Spinal Injury Association impairment scale participated for eight weeks in an auto-walking training program. The gait training program was carried out for 15 minutes, three times per day for 8 weeks with an auto-walking machine. The foot rests of the auto-walking machine can be moved forward, downward, backward and upward to make the gait pattern with fixed on crank. The patient's body weight is supported by a harness during waking training. We evaluated the gait speed, physiologic cost index, motor score of lower extremities and the WISCI (walking index for spinal cord injury) level before the training and after the forth and eighth week of walking training. 1. The mean gait speed was significantly increased from .22 m/s at pre-training to .28 m/s after 4 weeks of training and .31 m/s after 8 weeks of training (p=.004). 2. The mean physiologic cost index was decreased from 4.6 beats/min at pre-training to 3.0 beats/min after 4 weeks and 2.0 beats/min after 8 weeks of training, but it was not statistically significant (p=.140). 3. The mean motor score of lower extrernities was significantly increased from 29.8 to 35.8 after 8 weeks of training (p=.043). 4. The mean WISCI level was significantly increased from level 10 to level 19 after 8 weeks of training (p=.007). The results of this study suggest that the gait training program using the auto-walking machine increased the gait speed, muscle strength and galt pattern (WISCI level) in persons with incomplete spinal cord injury. A large, controlled study of this technique is warranted.

  • PDF

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

Research on the application of Machine Learning to threat assessment of combat systems

  • Seung-Joon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.47-55
    • /
    • 2023
  • This paper presents a method for predicting the threat index of combat systems using Gradient Boosting Regressors and Support Vector Regressors among machine learning models. Currently, combat systems are software that emphasizes safety and reliability, so the application of AI technology that is not guaranteed to be reliable is restricted by policy, and as a result, the electrified domestic combat systems are not equipped with AI technology. However, in order to respond to the policy direction of the Ministry of National Defense, which aims to electrify AI, we conducted a study to secure the basic technology required for the application of machine learning in combat systems. After collecting the data required for threat index evaluation, the study determined the prediction accuracy of the trained model by processing and refining the data, selecting the machine learning model, and selecting the optimal hyper-parameters. As a result, the model score for the test data was over 99 points, confirming the applicability of machine learning models to combat systems.

Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index (Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선)

  • PARK, Ju-Sung;LEE, Won-Hee;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.98-106
    • /
    • 2016
  • Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager(OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index(NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.

Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning (기계학습 기반의 산불위험 중기예보 모델 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Kang, Yoojin;Kwon, Chungeun;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.781-791
    • /
    • 2022
  • It is crucial to provide forest fire risk forecast information to minimize forest fire-related losses. In this research, forecast models of forest fire risk at a mid-range (with lead times up to 7 days) scale were developed considering past, present and future conditions (i.e., forest fire risk, drought, and weather) through random forest machine learning over South Korea. The models were developed using weather forecast data from the Global Data Assessment and Prediction System, historical and current Fire Risk Index (FRI) information, and environmental factors (i.e., elevation, forest fire hazard index, and drought index). Three schemes were examined: scheme 1 using historical values of FRI and drought index, scheme 2 using historical values of FRI only, and scheme 3 using the temporal patterns of FRI and drought index. The models showed high accuracy (Pearson correlation coefficient >0.8, relative root mean square error <10%), regardless of the lead times, resulting in a good agreement with actual forest fire events. The use of the historical FRI itself as an input variable rather than the trend of the historical FRI produced more accurate results, regardless of the drought index used.

Development and Application of Risk Recovery Index using Machine Learning Algorithms (기계학습알고리즘을 이용한 위험회복지수의 개발과 활용)

  • Kim, Sun Woong
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.4
    • /
    • pp.25-39
    • /
    • 2016
  • Asset prices decline sharply and stock markets collapse when financial crisis happens. Recently we have encountered more frequent financial crises than ever. 1998 currency crisis and 2008 global financial crisis triggered academic researches on early warning systems that aim to detect the symptom of financial crisis in advance. This study proposes a risk recovery index for detection of good opportunities from financial market instability. We use SVM classifier algorithms to separate recovery period from unstable financial market data. Input variables are KOSPI index and V-KOSPI200 index. Our SVM algorithms show highly accurate forecasting results on testing data as well as training data. Risk recovery index is derived from our SVM-trained outputs. We develop a trading system that utilizes the suggested risk recovery index. The trading result records very high profit, that is, its annual return runs to 121%.