• Title/Summary/Keyword: Independent transmission zeros

Search Result 2, Processing Time 0.017 seconds

Highly Miniaturized and Performed UWB Bandpass Filter Embedded into PCB with SrTiO3 Composite Layer

  • Cheon, Seong-Jong;Park, Jun-Hwan;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.582-588
    • /
    • 2012
  • In this paper, a highly miniaturized and performed UWB bandpass filter has been newly designed and implemented by embedding all the passive elements into a multi-layered PCB substrate with high dielectric $SrTiO_3$ composite film for 3.1 - 4.75 GHz compact UWB system applications. The high dielectric composite film was utilized to increase the capacitance densities and quality factors of capacitors embedded into the PCB. In order to reduce the size of the filter and avoid parasitic EM coupling between the embedded filter circuit elements, it was designed by using a $3^{rd}$ order Chebyshev circuit topology and a capacitive coupled transformation technology. Independent transmission zeros were also applied for improving the attenuation of the filter at the desired stopbands. The measured insertion and return losses in the passband were better than 1.68 and 12 dB, with a minimum value of 0.78 dB. The transmission zeros of the measured response were occurred at 2.2 and 5.15 GHz resulting in excellent suppressions of 31 and 20 dB at WLAN bands of 2.4 and 5.15 GHz, respectively. The size of the fabricated bandpass filter was $2.9{\times}2.8{\times}0.55(H)mm^3$.

A Design of Multi-layer Planar Type Microwave Filter (다층 평면형 초고주파 필터의 설계)

  • Lee Hong-Seop;Hwang Hee-Yong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • In this paper, a planar type bandpass filter in multilayered PCB is presented. The multilayered PCB structure has some advantages on fabricating microwave devices such as the size reduction and ability of tight coupling by folding or embedding. The proposed BPF has two transmission zeros at the both sides of the center frequency by using independent electric and magnetic coupling structure. The designed BPF with four layer teflon PCBs of dielectric constant 2.94 has dimensions of 24x20x1.524 in mm, center frequency of 2.47GHz and bandwidth of about l00MHz. A good agrement is achieved between the measured result and the simulated one. The influences of air gaps between the layers are also analyzed and presented.

  • PDF