• Title/Summary/Keyword: Indentation strength

Search Result 206, Processing Time 0.024 seconds

A Study on the Optimum Welding Conditions for Reducing the Depth of Indentation of Surface in Spot Welding (점용접 시 압흔 깊이 감소를 위한 최적 용접조건 선정에 관한 연구)

  • 서승일;이재근;장상길;차병우
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.57-64
    • /
    • 1996
  • In this paper, authors are trying to find optimum spot weldig conditions to minimize indentation of the plate surface which is crucial to quality of stainless rolling stocks. At first, to derive a simple equation to estimate the depth of indentation, a simplified one-dimensional bar model is proposed and validity of the model is confirmed by experiments. And also, to find proper welding conditions giving satisfied tensile strength of the welded joint, a simple formula is derived referring to the standard spot welding conditions by AWS. Optimization problem is formulated to find welding conditions such as welding current, time and applied force which give minimum indentation and proper tensile strength of joint, and solutions are found out. According to the results, the depth of indentation can be expressed by applied electrode froces and it can be shown that an optimum applied force exists.

  • PDF

In-field Evaluation of Structural Strength and Reliability Using Advanced Indentation System (Advanced Indentation System을 이용한 현장에서의 구조강도 건전성 평가)

  • Choi, Yeol;Son, Dong-Il;Jang, Jae-Il;Kwon, Dong-Il
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.230-237
    • /
    • 2001
  • For the structural integrity of large and complex structures such as railway vehicle, the in-field diagnosis of mechanical properties of the structures is needed, and especially, the mechanical characteristics of the weldment must be carefully evaluated. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property variations within weldment because they needs the limitations of specimen size and geometry. In this paper, to overcome this problems, the advanced indentation technique (AIS) is introduced for simple and non-destructive/in-field testing of weldment of industrial structures. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  • PDF

Application of Advanced Indentation System for Evaluati Tensile Property Degradation of Cr-Mo Steel (Cr-Mo 강의 열화도 평가를 위한 Advanced Indentation System의 응용)

  • Jang, Jae-Il;Choi, Yoel;Lee, Yun-Hee;Kwon, Dong-Il;Kim, Jeoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.231-236
    • /
    • 2001
  • A newly developed Advanced Indentation System (AIS), which is a portable and nondestructive system for evaluating tensile properties, was used to measure mechanical behavior of materials used under high temperature and pressure conditions. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. Aging effects of Cr-Mo and Cr-Mo-V steel at high temperature were simulated. Tensile properties including yield strength and tensile strength at various temperature are obtained from the test. For all test materials and conditions, the AIS-derived results were in good agreement with those from conventional standard test method. Examples of the test results ate given and potential applications of the AIS to assess the integrity of aging structures are briefly discussed.

  • PDF

The Strength Evaluation of Wheel for Railway Rolling Stock Using Instrumented Indentation Test (계장화 압입시험을 이용한 차륜의 강도평가)

  • Kim, Chul-Su;Ahn, Seung-Ho;Chung, Kwang-Woo;Park, Shin-Ho;Kang, Gil-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1607-1612
    • /
    • 2007
  • To assure safe usage of railway rolling stock, it is important to evaluate the strength of the wheel which is core part in bogies. However, conventional standard testing methods using destructive technique could not evaluate mechanical properties of degraded wheels during rolling stock maintenance work. Instrumented indentation test is a new way to evaluate nondestructively the strength of mechanical components by analyzing indentation load-depth curves. In this study, to evaluate tensile strength of the wheel, instrumented indentation test is performed nondestructively according to KS B 0950. Furthermore, test results are examined by tensile test in accordance with KS R 9221.

  • PDF

Strength and Reliability of Porous Ceramics Measured by Sphere Indentation on Bilayer Structure

  • Ha, Jang-Hoon;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.503-507
    • /
    • 2004
  • The importance of porous ceramics has been increasingly recognized and adequate strength of porous ceramics is now required for structural applications. Porosities of porous ceramics act as flaws in inner volume and outer surface which result in severe strength degradation. The effect of pore structure, however, on strength and reliability of porous ceramics has not been clearly understood. We investigate the relationship between pore structure and mechanical properties using a sphere indentation on bilayer structure, porous ceramic top layer with soft polymer substrate. Porous alumina and silica were prepared to characterize the isolated pore structure and interconnected pore structure, respectively. The porous ceramic with 1mm thickness were bonded to soft polycarbonate substrate and then fracture strengths were estimated from critical loads for radial cracking of porous ceramics during sphere indentation from top surface. This simple and reproducible technique provides Weibull modulus of strength of porous ceramics with different pore structure. It shows that the porous ceramics with isolated pore structure have higher strength and higher Weibull modulus as well, than those with interconnected pore structure even with the same porosity.

A Study on Residual Strength of Carbon/Epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Quasi Static Indentation Damage (탄소섬유/에폭시 면재, 알루미늄 허니컴 코어 샌드위치 복합재 구조의 압입 손상에 의한 잔류강도 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Seoung-Hyun
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.24-29
    • /
    • 2009
  • This study aims to investigate the residual strength of sandwich composites with Al honeycomb core and carbon fiber face sheets after the quasi-static indentation damage by the experimental investigation. The 3-point bending test and the edge-wise compressive strength test were used to find the mechanical properties, and the quasi-static point load was applied to introduce the simulated damage on the specimen. The damaged specimens were finally assessed by the 3-point bending test and the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the quasi-static indentation. The both test results showed that the residual strength of the damaged specimen was decreased according to increases of the damaged depth.

Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds (비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가)

  • Choi, Chul-Young;Kim, Jun-Ki;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Yeong-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

The Influence of Indentation on Rolling Contact Fatigue (구름 접촉피로에 미치는 압혼의 영향)

  • 이동엽;이한영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.74-79
    • /
    • 1997
  • Most of the results of recent research for the influence of indentation on rolling contact fatigue has been carried out with high strength material under the point contact. The plastic lug around the indent also has been known as a source of stress concentration. This study is undertaken to analyze the influence of indentation on rolling contact fatigue with low strength material under the line contact. The results in this study show that the plastic flow around indentation by rolling friction has a major influence, differed from the results of high strength material. And the change of residual stress and half-value breadth measured to the failure by X-ray diffraction can be identified to predict the rolling contact fatigue life of indented materials.

  • PDF

Effects of Contact Damage and Residual Stress in Dental Layered Ceramics (치아응용을 위한 층상 세라믹스에서의 접촉손상 및 잔류응력의 영향)

  • 정종원;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.288-293
    • /
    • 2000
  • Effects of contact damage and residual stress for two kinds of dental restorative layered ceramics, porcelain/alumina and porcelain/zirconia bilayers, were observed with Hertzian and Vickers indentation methods. Indentation stress-strain behavior of each material, strength degradation of the coating material, and crack propagation behavior in the coating layer after Vickers indentation were examined by an optical microscope. As a result, porcelain as coating materials showed the classical brittleness. It was inferred that damage and strength in two bilayer system were dependent on thermal expansion mismatch between the coating material and the substrate, which affected the strength degradation. Residual stress resulting from thermal expansion mismtch was formed in the coating layer, and specially in the case of porcelain/zirconia, residual stress was eliminated as coating thickness decreased.

  • PDF