• Title/Summary/Keyword: Incubation temperatures

Search Result 201, Processing Time 0.026 seconds

Characteristic of Nutrient Release by Submerged Plants under Different Water Temperatures in Lake Reservoir (호소저수구역에서 침수식물체의 수온별 영양염류 용출 특성)

  • Lim, Byung-Jin;Lee, Sang-Gyu;Seo, Dong-Cheol;Choi, Ik-Won;Kang, Se-Won;Seo, Young-Jin;Lee, Dong-Jin;Kim, Sang-Don;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.657-663
    • /
    • 2012
  • To evaluate effects of water temperatures on nutrient releases of submerged plants in lake reservoir, COD, T-N and T-P releases of submerged plants were investigated for 60 days under different incubation temperatures ($5^{\circ}C$ and $25^{\circ}C$) in columns. The amounts of COD releases by Carex dimorpholepis were $60.4mg\;L^{-1}$ at $5^{\circ}C$ and $78.0mg\;L^{-1}$ at $25^{\circ}C$. In Miscanthus sacchariflorus, the amounts of COD releases were $62.5mg\;L^{-1}$ at $5^{\circ}C$ and $70.5mg\;L^{-1}$ at $25^{\circ}C$. The amounts of T-N releases in Carex dimorpholepis at $5^{\circ}C$ and $25^{\circ}C$ were 45.8 and $60mg\;L^{-1}$, respectively. In Miscanthus sacchariflorus, the amounts of T-N releases were $55.7mg\;L^{-1}$ at $5^{\circ}C$ and $61.0mg\;L^{-1}$ at $25^{\circ}C$. At $5^{\circ}C$, the amounts of T-P releases in Carex dimorpholepis and Miscanthus sacchariflorus were 5.65 and $7.10mg\;L^{-1}$, respectively. At $25^{\circ}C$, the amounts of T-P releases in Carex dimorpholepis and Miscanthus sacchariflorus were 8.70 and $8.18mg\;L^{-1}$, respectively. In the column experiment, the amounts of COD, T-N and T-P releases by submerged plants at $25^{\circ}C$ were generally higher than those at $5^{\circ}C$.

Biological Characters of Bacillus pumilus CPB-St Inhibiting the Growth of Fish Pathogenic Streptococci (어류병원성 연쇄구균의 생장을 억제하는 Bacillus pumilus CPB-St의 생물학적 특성)

  • Lee, Minyeong;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.28 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • The biological characteristics of Bacillus sp.CPB-St as a probiotic strain to control fish streptococcosis was determined. Based on 16S rRNA sequencing, Bacillus sp.CPB-St was identified as Bacillus pumilus and named B. pumilus CPB-St (Abbreviated as CPB-St). Growth inhibitory activity of CPB-St against Streptococcus spp. was examined at three different incubation temperatures ($20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$) and three culture media (NA, TSA, and BHIA) based on the diameter of inhibition zone. Its activity (inhibition zone of 11~29 mm) at $20^{\circ}C$ was higher than that (12~21 mm) at $30^{\circ}C$. Its activity (29 mm) in NA media was the same as that (29 mm) in TSA media. However, it was higher than that (22 mm) in BHIA media. The inhibitory activity of CPB-St against Streptococcus spp. was high at pH7. However, its activity was the same at salinity of 0.5% to 3%. CPB-St showed maximum growth after incubation at $25^{\circ}C$ for 48 h. To use CPB-St as probiotics, settlement studies in fish intestine and its efficacy through feeding are needed. CPB-St was highly resistant to gastric juice at pH4 and flounder's bile salt as well as deoxycholic acid at $300{\mu}g/ml$. CPB-St showed optimal viability in 1% NaCl. It showed similar growth in 0% to 7% NaCl. CPB-St could tolerate $-20^{\circ}C$ and $-70^{\circ}C$ for 45 min. There was no difference in the growth of the strain between room temperature and $4^{\circ}C$. Fish diet supplemented with CPB-St could be stored at low temperature without cell loss. Therefore, CPB-St might be used as probiotics to control streptococcosis of fish.

Occurrence of Meloidogyne incognita Infecting Resistant Cultivars and Development of an Efficient Screening Method for Resistant Tomato to the Mi-virulent Nematode (뿌리혹선충 저항성 토마토를 감염하는 Meloidogyne incognita의 발생 및 이 선충을 이용한 효율적인 저항성 검정법 확립)

  • Hwang, Sung Min;Park, Myung Soo;Kim, Jin-Cheol;Jang, Kyoung Soo;Choi, Yong Ho;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.217-226
    • /
    • 2014
  • Root-knot symptoms were found on a commercial tomato cultivar carrying Mi, a resistance gene to root-knot nematodes including Meloidogyne incognita, M. arenaria, and M. javanica in 2012 at Buyeo, Chungnam Province in Korea. The isolate was identified as M. incognita based on molecular analyses using two species-specific primer sets. Pathogenicity of the isolate on one susceptible and three resistant tomato cultivars to the root-knot nematodes was tested. The nematode isolate showed strong pathogenicity on all the tested cultivars at all tested incubation temperatures. In addition, resistance degree of 33 commercial tomato cultivars, 8 susceptible and 25 resistant cultivars to root-knot nematodes, was also tested. Plants were determined as resistant when they suppressed the nematode reproduction. All the cultivars demonstrated strong susceptibility to the nematode regardless of resistance of the tomato cultivars. To our knowledge, this is the first report on the occurrence of Mi infecting M. incognita isolate in Korea. On the other hand, to construct an efficient screening method for selecting resistant breeding source to the nematode isolate, root-knot development of M. incognita on four tomato cultivars according to several conditions such as inoculum concentration, plant growth stage, and incubation period after transplant was investigated. Reproduction of the nematode on all the tested cultivars according to inoculum concentration increased in a dose-dependent manner. Except for inoculum concentration, there was no significant difference in reproduction level of the cultivars according to the other tested conditions. On the basis of the results, we suggest an efficient screening method for new resistant tomato to the nematode isolate.

Viability of Probiotics in Feed under High Temperature Conditions and Their Growth Inhibitory Effect on Contaminant Microbes (고온 조건에서 사료 내 생균제의 생존성 및 오염미생물의 생장 억제 효과)

  • Kim, Gyeom-Heon;Yi, Kwon-Jung;Lee, Ah-Ran;Jang, In-Hwan;Song, In-Geun;Kim, Dong-Woon;Kim, Soo-Ki
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • The aim of this study was to investigate the effect of high temperature on the viability of probiotic organisms (Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) mixed with animal feed under controlled conditions by simulating a farm feed bin in the summer. Following inoculation of probiotics into the feed, the pH and probiotic viability were monitored during an 8-day incubation at room temperature. Sterile and non-sterile feeds displayed different patterns of pH changes, with increased pH in non-sterile feed at 2 days, but a pattern of decreasing pH at 4 days. The viabilities of S. cerevisiae and B. subtilis after mono/co-inoculation were maintained without substantial changes during the incubation, whereas L. plantarum viability tended to decline. In both non-sterile and sterile feeds, the probiotics were maintained or grew without any antagonistic effects. Probiotic viability was also tested upon a shift to high temperature ($60^{\circ}C$). There was no distinct change in pH between sterile and non-sterile feeds after the temperature shift. L. plantarum and S. cerevisiae could not survive at the high temperature, whereas B. subtilis displayed normal growth, and it inhibited the growth of contaminant microbes. Fungal growth was not observed in non-sterile feed 2 days after supplementation with B. subtilis. Therefore, heat resistant B. subtilis could be safely used in feed bins to inhibit microbial contamination, even at high temperatures. The prevention of elevated temperature in feed bins is necessary for the utilization of L. plantarum and S. cerevisiae during the summer season.

Comparison of hydrogenases prepared from Clostridium butyricum and Thiocapsa roseopersicina (Clostridium butyricum [절대혐기발효세균]과 Thiocapsa roseopersicina [홍색유황세균]의 수소생산 효소 특성 비교)

  • Baek, Jin-Sook;Yun, Young-Su;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.219-228
    • /
    • 2005
  • Fermentative strict anaerobic bacterium, Clostricium butyricum NCIB 9576 (Cl. butyricum) and purple sulfur phototrophic bacterium, Thiocapsa roseopersicina NCIB 8347 (T. roseopersicina) were compared on their temperature and oxygen stabilities of cytoplasmic hydrogenases. Cell growth phase and the specific activities of evolution $H_2ase$ were related for both strains, exhibiting the highest cytoplasmic $H_2ase$ activities during the logarithmic growth phases which were 4 and 18 hrs after the incubation for Cl. butyricum and T. roseopersicina, respectively. The optimum temperatures for the growth of Cl. butyricum and T. roseopersicina were 37$^{\circ}C$ and 27$^{\circ}C$, respectively, while those for $H_2$ evolution of cytoplsmic hydrogenases prepared from Cl. butyricum ($C-H_2ase$) and T. roseopersicina ($T-H_2ase$) were 45$^{\circ}C$ and 65$^{\circ}C$, respectively. $T-H_2ase$ was more thermo-stable than $C-H_2ase$. $T-H_2ase$ retained its full activity for 5 hrs at 50$^{\circ}C$ and retained 90% of its original activity for 5 hrs at 60$^{\circ}C$, however, $C-H_2ase$ lost its activity drastically at 50$^{\circ}C$. The optimum pHs for $H_2$ oxidation of $C-H_2ase$ and $T-H_2ase$ were 9.0 and 7.5 respectively. The both enzymes showed maximum $H_2$ evolution activity at pH 7.0. Under the aerobic condition, 80% of $T-H_2ase$ activity was retained for 10 hrs at 30$^{\circ}C$, and 50% of activity was still remained after 6 days at the same experimental conditions. But the $C-H_2ase$ was labile to oxygen and lost its activity immediately after the exposure to air.

Isolation of Bacillus amyloliquefaciens ATC6 Producing Acidic Cellulase (산성 Cellulase를 분비하는 Bacillus amyloliquefaciens ATC6의 분리)

  • Lee, Se-Hyung;Chae, Jong-Pyo;Kim, Min-Jeong;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • A bacterium producing acidic cellulase was isolated from pig feces. The isolate, ATC6 strain, was found to be Gram-positive, non-motile, catalase-positive, and spore-forming stain. Under an electron microscope, the cells were observed to be rod-shaped. The isolate was identified as Bacillus amyloliquefaciens ATC6 on the basis of morphological and biochemical properties as well as 16S rRNA gene sequences. Optimum pH and temperature for the cellulase activity of the culture supernatant of B. amyloliquefaciens ATC6 were found to be pH 4.5 and $55^{\circ}C$, respectively. More than 80% of its maximum activity was maintained at pH 4.0. The cellulase activity was maintained at temperatures ranging from 35 to $55^{\circ}C$ after 2 h incubation at pH 4.5, whereas it's activity decreased rapidly at $65^{\circ}C$.

Effects of Micronization on the In situ and In vitro Digestion of Cereal Grains

  • McAllister, T.A.;Sultana, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.929-939
    • /
    • 2011
  • The effects of micronization on in situ and in vitro nutrient disappearances of wheat, barley and corn were investigated in a series of experiments. In Experiment 1, chemical composition and in situ dry matter disappearance (DMD) of six varieties of wheat were determined. In addition, an in vitro study was completed using ground micronized and unmicronized wheat (var. Kansas). In Experiment 2, three varieties of wheat (Kansas, Sceptre and Laura) and in Experiment 3, three cereal grains (wheat, barley and corn) were either micronized for 1 min to attain internal kernel temperatures of 90-100$^{\circ}C$ or not (controls), and DM, protein and starch disappearances were estimated. In Experiment 2, an in vitro study was also completed using ground micronized and unmicronized wheat (var. Kansas). Wheat samples varied with respect to crude protein (10.0-21.2%), starch (61.6-73.9%), NDF (8.5-11.8%), volume weight (753-842 g/L) and kernel hardness (0.0-32.0). Rate (p = 0.003) and extent (p = 0.001) of in situ DMD differed among wheat varieties. Correlations between in situ kinetics, and chemical and physical properties of wheat varieties showed that protein content was negatively correlated with the rate of disappearance ($r^2$ = -0.77). Micronization of all grains markedly reduced (p = 0.001) the rate and extent of DM, and protein disappearances as compared to control samples. Micronization increased (p<0.05) the digestion of starch in wheat. However, release of ammonia into the incubation medium was markedly reduced (p<0.05), suggesting that micronization increased the resistance of protein to microbial digestion. Disappearances of DM, protein and starch differed (p = 0.001) among cereal grains with wheat>barley>corn. Micronization reduced the rate of DM disappearance (p = 0.011) and slowly degradable protein fractions (p = 0.03), however, increased (p = 0.004) slowly degradable starch fractions of all three cereals. Examination of in situ samples by scanning electron microscopy confirmed that microbial colonization focused on starch granules in micronized grains, and that the protein matrix exhibited resistance to microbial colonization. These results suggest that micronization may be used to increase the ruminal escape value of protein in cereal grains, but may lead to increased starch digestion if grains are finely ground.

Effects of Moisture, Temperature, and Characteristics of two Soils on Imazamethabenz Degradation (토양 수분, 온도, 특성이 imazamethabenz 분해에 미치는 영향)

  • Joo, Jin-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.245-254
    • /
    • 2001
  • Effects of soil moisture and temperature on the degradation rate of imazamethabenz were studied in two soils, a Declo sandy loam soil with 1.5% organic matter and pH of 8.0, and a Pancheri silt loam soil with 2.1% organic matter and pH of 7.7. Soils were incubated for 12 weeks under controlled conditions. Treatments were a factorial arrangements with combinations of three soil moistures (45, 75, 100% of field capacity) and two soil temperatures (20, 30C). Imazamethabenz degradation followed first-order kinetics for all soil moisture-soil temperature combinations. Imazamethabenz degradation rate was proportional to increase of soil moisture and temperature. Soil moisture effect on imazamethabenz degradation was greater when soil moisture was increased from 45 to 75% of field capacity (half-life decreased 2.6 fold) than when moisture increased from 75 to 100% of field capacity (half-life decreased 1.2 fold). Imazamethabenz degradation occurred more rapidly in the Pancheri silt loam than the Declo sandy loam soil. Formation of imazamethabenz acid from imazamethabenz followed a quadratic trend for most soil-moisture-soil temperature combinations. Imazamethabenz acid formation initially increased at earlier stages, but later gradually decreased. In most cases, increasing soil moisture and temperature appeared to accelerate it's acid breakdown to other metabolites.

  • PDF

Influence of Dry Roasting on Rumen Protein Degradation Characteristics of Whole Faba Bean (Vicia faba) in Dairy Cows

  • Yu, P.;Holmes, J.H.G.;Leury, B.J.;Egan, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.35-42
    • /
    • 1998
  • Whole faba beans (WFB) were dry roasted at different temperatures (110, 130, $150^{\circ}C$) for 15, 30, 45 minutes to determine the optimal heating conditions of time and temperature to increase nutritional value. Ruminant degradation characteristics of crude protein (CP) of WFB were determined by the nylon bag incubation technique in dairy cows fed 60% hay and 40% concentrate. Measured characteristics of crude protein (CP) were soluble (washable) fraction (S), undegradable fraction (U), lag time (T0), potentially degradable fraction (D) and the rate of degradation (Kd) of insoluble but degradable fraction. Based on measured characteristics, percentage bypass crude protein (%BCP) and bypass crude protein (BCP in g/kg) were calculated. Degradability of CP was reduced by dry roasting (p < 0.01). S was reduced rapidly with increasing time and temperature, from 49.0% in the raw WFB (RWFB) to 26.3% in $150^{\circ}C/45$ min. D varied from 50.7% in RWFB to 73.7% in $150^{\circ}C/45^{\prime}$. U varied from 0% in $130^{\circ}C/45^{\prime}$, $150^{\circ}/30^{\prime}$ and $150^{\circ}/45^{\prime}$ to 0.66% in $110^{\circ}/45^{\prime}$ (0.24% for the RWFB). Lag time (T0) varied from 1.58 h in $130^{\circ}C/30^{\prime}$ to 2.40 h in $150^{\circ}C/45^{\prime}$ (1.87 h for RWFB). Kd varied from 24.2% in the $110^{\circ}C/30^{\prime}$ to 4.3% in $150^{\circ}C/45^{\prime}$ (21.4% for the RWFB). Kd was significantly reduced with time and temperature. All these effects resulted in increasing % BCP from 8.9% in the $110^{\circ}C/45^{\prime}$, 11.3% in the RWFB to 43.1% in the $150^{\circ}C/45$. Therefore BCP increased from 31.3 and 39.9 to 148.4 g/kg respectively. Both %BCP and BCP at $150^{\circ}C/45$ increased nearly 4 times over the raw faba beans. The effects of dry roasting temperature and time on %BCP and BCP seemed to be linear up to the highest values tested. Therefore no optimal dry roasting conditions of time and temperature could be determined at this stage. It was concluded that dry roasting was effective in shifting crude protein degradation from rumen to intestine to reduce unnecessary nitrogen (N) loss in the rumen. To determine the optimal treatment, the digestibility of each treatment should be measured in the next trial using mobile bags technique.

Quality Characteristics of Wheat Nuruks by Storage Conditions of Liquid Starters Using Rhizopus oryzae N174 (Rhizopus oryzae N174를 이용한 액체종국 저장조건에 따른 밀누룩의 품질특성)

  • Choi, Jeong-Sil;Jung, Seok-Tae;Choi, Ji-Ho;Choi, Han-Seok;Baek, Seong-Yeol;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.319-324
    • /
    • 2012
  • Production of liquid starters using wheat bran as a medium for Rhizopus oryzae N174 and the changes in their characteristics noted during storage were investigated in this study. The optimal culture conditions of the liquid starters were determined to be 5~15% (w/v) wheat bran and 48~72 hrs of incubation. The effects of liquid starters with different storage periods and temperatures (-18, 4, 10 and $25^{\circ}C$) on the quality of wheat nuruk were evaluated. According to the results of the pH, acidity, reducing sugar and enzyme activities, it was found that liquid starter using wheat bran preserved for one day, at any temperature, is the best method of storage for seed cultures for R. oryzae N174.