• 제목/요약/키워드: Incremental extraction

검색결과 32건 처리시간 0.02초

비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법 (On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.361-368
    • /
    • 2004
  • 본 논문에서는 온라인 학습 자료의 비선형 특징(feature) 추출을 위한 새로운 온라인 비선형 주성분분석(OL-NPCA : On-line Nonlinear Principal Component Analysis) 기법을 제안한다. 비선형 특징 추출을 위한 대표적인 방법으로 커널 주성분방법(Kernel PCA)이 사용되고 있는데 기존의 커널 주성분 분석 방법은 다음과 같은 단점이 있다. 첫째 커널 주성분 분석 방법을 N 개의 학습 자료에 적용할 때 N${\times}$N크기의 커널 행렬의 저장 및 고유벡터를 계산하여야 하는데, N의 크기가 큰 경우에는 수행에 문제가 된다. 두 번째 문제는 새로운 학습 자료의 추가에 의한 고유공간을 새로 계산해야 하는 단점이 있다. OL-NPCA는 이러한 문제점들을 점진적인 고유공간 갱신 기법과 특징 사상 함수에 의해 해결하였다. Toy 데이타와 대용량 데이타에 대한 실험을 통해 OL-NPCA는 다음과 같은 장점을 나타낸다. 첫째 메모리 요구량에 있어 기존의 커널 주성분분석 방법에 비해 상당히 효율적이다. 두 번째 수행 성능에 있어 커널 주성분 분석과 유사한 성능을 나타내었다. 또한 제안된 OL-NPCA 방법은 재학습에 의해 쉽게 성능이 항상 되는 장점을 가지고 있다.

수화 패턴 인식을 위한 2단계 신경망 모델 (Two-Stage Neural Networks for Sign Language Pattern Recognition)

  • 김호준
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.319-327
    • /
    • 2012
  • 본 논문에서는 착용식 추적장치나 표식 등의 보조 도구를 사용하지 않는 환경의 동영상 데이터로부터 수화 패턴을 인식하는 방법론에 관하여 고찰한다. 시스템 설계 및 구현에 관한 주제로서 특징점의 추출기법, 특징데이터의 표현기법 및 패턴 분류기법에 관한 방법론을 제시하고 그 유용성을 고찰한다. 일련의 동영상으로 표현되는 수화패턴에 대하여 특징점의 공간적 위치에 대한 변이 뿐만 아니라 시간차원의 변화를 고려한 특징데이터의 표현방법을 제시하며, 방대한 데이터에 의한 분류기의 크기 문제와 계산량의 문제를 개선하기 위하여 효과적으로 특징수를 줄일 수 있는 특징추출 방법을 소개한다. 패턴 분류과정에서 점진적 학습(incremental learning)이 가능한 신경망 모델을 제시하고 그 동작특성 및 학습효과를 분석한다. 또한 학습된 분류모델로부터 특징과 패턴 클래스 간의 상대적 연관성 척도를 정의하고, 이로부터 효과적인 특징을 선별하여 성능저하 없이 분류기의 규모를 최적화 할 수 있음을 보인다. 제안된 내용에 대하여 여섯 가지 수화패턴을 대상으로 적용한 실험을 통하여 유용성을 평가한다.

Incremental Eigenspace Model Applied To Kernel Principal Component Analysis

  • Kim, Byung-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.345-354
    • /
    • 2003
  • An incremental kernel principal component analysis(IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis(KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenvectors should be recomputed. IKPCA overcomes this problem by incrementally updating the eigenspace model. IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the classification problem on nonlinear data set.

  • PDF

대용량 문서 데이터베이스를 위한 효율적인 점진적 문서 클러스터링 기법 (An Effective Incremental Text Clustering Method for the Large Document Database)

  • 강동혁;주길홍;이원석
    • 정보처리학회논문지D
    • /
    • 제10D권1호
    • /
    • pp.57-66
    • /
    • 2003
  • 컴퓨터의 발전과 인터넷의 급속한 발전으로 정보의 양이 폭발적으로 증가하게 되었고 이러한 방대한 양의 정보들은 대부분 문서 형태로 관리되고 있으며, 문서 단위별 표현된 많은 정보들을 효과적으로 관리하고 검색하기 위한 방법의 연구가 필요하게 되었다. 문서 클러스터링은 문서간의 유사도를 바탕으로 서로 연관된 문서들을 군집화하여 문서들을 주제별로 통합하는 방법으로 대용량의 문서들을 자동으로 분류하고, 검색하는 데 있어서 검색의 정확성을 증대시킬 수 있다. 본 논문에서는 새로운 문서의 추가나 기존문서의 삭제로 인하여 군집화 대상이 되는 문서 집합이 점진적으로 변화하는 환경을 위한 점진적 문서 클러스터링 알고리즘을 제안한다. 점진적 문서 클러스터링 알고리즘은 새로운 문서가 추가되었을 경우 문서 전체를 다시 클러스터링하지 않고, 이미 생성된 클러스터들의 구조를 적극적으로 변화시킴으로써 높은 효율성을 제공할 수 있다. 또한, 문서 클러스터링의 정확도를 높이기 위하여 통계적인 기법으로 불용어를 판별하여 제거하는 알고리즘을 제안하고, 문서 클러스터링에서 정확한 단어가중치 산출을 위해 TF$\times$IDF 공식을 수정한 TF$\times$NIDF 공식을 제안한다.

점진적 EM 알고리즘에 의한 잠재토픽모델의 학습 속도 향상 (Accelerated Loarning of Latent Topic Models by Incremental EM Algorithm)

  • 장정호;이종우;엄재홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권12호
    • /
    • pp.1045-1055
    • /
    • 2007
  • 잠재토픽모델(latent topic model)은 데이타에 내재된 특징적 패턴이나 데이타 정의 자질들 간의 상호 관련성을 확률적으로 모델링하고 자동 추출하는 모델로서 최근 텍스트 문서로부터의 의미 자질 자동 추출, 이미지를 비롯한 멀티미디어 데이타 분석, 생물정보학 분야 등에서 많이 응용되고 있다. 이러한 잠재토픽모델의 대규모 데이타에 대한 적용 시 그 효과 증대를 위한 중요한 이슈 중의 하나는 모델의 효율적 학습에 관한 것이다. 본 논문에서는 대표적 잠재토픽모델 중의 하나인 PLSA (probabilistic latent semantic analysis) 기법을 대상으로 점진적 EM 알고리즘을 활용한, 기본 EM 알고리즘 기반의 기존 학습에 대한 학습속도 증진 기법을 제안한다. 점진적 EM 알고리즘은 토픽 추론 시 전체 데이타에 대한 일괄적 E-step 대신에 일부 데이타에 대한 일련의 부분적 E-step을 수행하는 특징이 있으며 이전 데이터 일부에 대한 학습 결과를 바로 다음 데이타 학습에 반영함으로써 모델 학습의 가속화를 기대할 수 있다. 또한 이론적인 측면에서 지역해로의 수렴성이 보장되고 기존 알고리즘의 큰 수정 없이 구현이 용이하다는 장점이 있다. 논문에서는 해당 알고리즘의 기본적인 응용과 더불어 실제 적용과정 상에서의 가능한 데이터 분할법들을 제시하고 모델 학습 속도 개선 면에서의 성능을 실험적으로 비교 분석한다. 실세계 뉴스 문서 데이타에 대한 실험을 통해, 제안하는 기법이 기존 PLSA 학습 기법에 비해 유의미한 수준에서 학습 속도 증진을 달성할 수 있음을 보이며 추가적으로 모델의 병렬 학습 기법과의 조합을 통한 실험 결과를 간략히 제시한다.

동적 변형의 회전 성분을 효율적으로 추출하기 위한 실용적 방법 (A Practical Method for Efficient Extraction of the Rotational Part of Dynamic Deformation)

  • 최민규
    • 한국게임학회 논문지
    • /
    • 제18권1호
    • /
    • pp.125-134
    • /
    • 2018
  • 본 논문에서는 시간에 따라 연속적으로 변하는 $3{\times}3$ 행렬의 회전 성분을 효율적으로 추출하는 실용적인 방법을 제안한다. 이는 물리기반 동적 변형을 위하여 널리 사용되는 공회전 유한 요소법이나 형상 맞춤 변형에서 매우 중요한 기술이다. 최근 극분해를 사용하는 시간 독립적인 기존 방법들과 달리 회전행렬 추출을 물리적으로 공식화한 후, 점진적 회전 표현법을 이용하는 반복법이 제안되었다. 본 논문에서는 점진적 회전 벡터의 최대 회전각을 ${\pi}/2$ 이내로 제한함으로써 반복 횟수를 줄이는 최적화 기법을 개발한다. 사실적인 동적 변형 시뮬레이션에서는 충분히 작은 시간 간격을 사용하기 때문에 이러한 제한은 실용적으로 문제가 되지 않는다. 다양한 실험을 통해 제안된 방법의 효율성 및 실용성을 보인다.

An Incremental Statistical Method for Daily Activity Pattern Extraction and User Intention Inference

  • Choi, Eu-Ri;Nam, Yun-Young;Kim, Bo-Ra;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권3호
    • /
    • pp.219-234
    • /
    • 2009
  • This paper presents a novel approach for extracting simultaneously human daily activity patterns and discovering the temporal relations of these activity patterns. It is necessary to resolve the services conflict and to satisfy a user who wants to use multiple services. To extract the simultaneous activity patterns, context has been collected from physical sensors and electronic devices. In addition, a context model is organized by the proposed incremental statistical method to determine conflicts and to infer user intentions through analyzing the daily human activity patterns. The context model is represented by the sets of the simultaneous activity patterns and the temporal relations between the sets. To evaluate the method, experiments are carried out on a test-bed called the Ubiquitous Smart Space. Furthermore, the user-intention simulator based on the simultaneous activity patterns and the temporal relations from the results of the inferred intention is demonstrated.

자질별 관계 패턴의 다변화를 통한 온톨로지 확장 (Incremental Enrichment of Ontologies through Feature-based Pattern Variations)

  • 이신목;장두성;신지애
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.365-374
    • /
    • 2008
  • 본 논문에서는 패턴의 다변화를 통하여 관계를 점진적으로 추출함으로써 온톨로지를 확장하는 모델을 제안한다. 패턴 다변화 과정에서 위키피디아로부터 추출한 관계 패턴 후보를 자질별로 다변화시킨다. 다변화된 패턴 후보로부터 말뭉치 빈도수에 따른 신뢰도를 이용하여 패턴을 선별한다. 선별된 패턴은 위키피디아로부터 관계를 추출하는 데 사용되며, 추출된 관계는 다시 관계 패턴 확장에 사용된다. 본 논문에서는 점진적 학습 과정에서의 패턴 다변화를 통하여 패턴 선택의 범위를 확장함으로써, 선택되는 패턴이 점진적으로 정제되는 모델을 제시한다. 이를 통하여, 관계의 확장성과 정확도를 향상시키고자 하였다. 단일 자질 패턴 모델에 대한 실험을 통하여, 어휘, 중심어, 상위어 정보는 신뢰도에, 품사, 구문 정보는 확장성에 유리하며, 구문 단위 유형별로 필요한 자질 유형이 다름을 관찰하였다. 이와 같은 특성에 기반하여 현재 연구 진행 중인복합 자질 패턴 모델을 제안한다.

U-learning 환경의 대용량 학습문서 판리를 위한 효율적인 점진적 문서 (An Effective Increment리 Content Clustering Method for the Large Documents in U-learning Environment)

  • 주길홍;최진탁
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권9호
    • /
    • pp.859-872
    • /
    • 2004
  • 컴퓨터와 통신 기술이 발전함에 따라 최근의 교육 환경은 학습자 스스로 학습 내용, 학습 시간 및 학습 순서를 선택하고 조직하는 유비쿼터스 학습 방향으로 나아가고 있다. 방대한 양의 학습정보들은 대부분 문서 형태로 관리되고 있기 때문에 문서 단위로 표현된 많은 정도들을 효과적으로 관리하고 검색하기 위한 방법의 연구가 필요하게 되었다. 문서 클러스터링은 문서간의 유사도를 바탕으로 서로 연관된 문서들을 군집화하여 문서틀을 주제별로 통합하는 방법으로 대용량의 문서들을 자통으로 분류하고, 검색하는 데 있어서 검색의 정확성을 증대시킬 수 있다. 따라서 본 논문에서는 새로운 학습 문서의 추가나 기존문서의 삭제로 인하여 군집화 대상이 되는 학습 문서 집합이 점진적으로 변화하는 환경을 위한 점진적 문서 클러스터링 알고리즘을 제안한다. 점진적 문서 클러스터링 알고리즘은 새로운 문서가 추가되었을 경우 문서 전체를 다시 클러스터링하지 않고. 이미 생성된 클러스터들의 구조를 적응적으로 변화시킴으로써 높은 효율성을 제공할 수 있다. 또한, 문서 글러스터링의 정확도극 높이기 위하여 통계적인 기법으로 불용어를 판별하여 제거하는 알고리즘을 제안한다.

  • PDF

비도시지역 학교인구의 구강보건진료소비실태에 관한 조사연구 (A study on the school dental health care in rural area)

  • 김진범
    • 보건교육건강증진학회지
    • /
    • 제2권1호
    • /
    • pp.107-112
    • /
    • 1984
  • In order to develop the school dental health care in rural area, the author collected data about the population of all 6-17 year students living in Young dong-gun county, and Surveyed their dental health cares during one year of 1982. From the collected data, several dental health indices such as percentage of students of all population, percentage of students who visited dentists once or more during one year, average annual dentist visit and average annual dental treatment case were calculated and discussed. The obtained results were as follows; 1. The percentage of students of all population in Young dong-gun county was 29.65%. 2. The percentage of students who visited dentists once or more during one year was 4.67%. 3. The average annual dentist visit per student was 0.11. 4. The average annual dental treatment case per student was 0.16. 5. The oral examination case was 0.05, intraoral radiograph 0.01, oral prophylaxis 0.00, filling of dental carious lesion 0.02, pulp treatment 0.02, extraction of teeth 0.04, and others 0.02 annually in the average. In comparison with detectable need for dental treatment cases, oral prophylaxis was not supplied at all, filling of dental carious lesion was supplied about 1% and extraction of teeth was supplied about 10% of detectable need. 6. It was recommended that school incremental dental care project should be developed for school dental health programme in order to supply all of the detectable need for dental treatment.

  • PDF