• Title/Summary/Keyword: Incremental displacement

Search Result 171, Processing Time 0.021 seconds

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling

  • Thai, Huu-Tai;Kim, Seung-Eock;Kim, Jongmin
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, a conventional refined plastic hinge analysis is improved to account for the effects of local buckling and lateral-torsional buckling. The degradation of flexural strength caused by these effects is implicitly considered using practical LRFD equation. The second-order effect is captured using stability functions to minimize modeling and solution time. An incremental-iterative scheme based on the generalized displacement control method is employed to solve the nonlinear equilibrium equations. A computer program is developed to predict the second-order inelastic behavior of space steel frames. To verify the accuracy and efficiency of the proposed program, the obtained results are compared with the existing results and those generated using the commercial finite element package ABAQUS. It can be concluded that the proposed program proves to be a reliable and effective tool for daily use in engineering design.

Inelastic Analysis of Space Steel Frames Considering Spread of Plasticity (소성영역 진전효과를 고려한 공간 뼈대구조의 비탄성 해석)

  • 한재영;김성보
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.45-52
    • /
    • 2003
  • A finite element procedure to estimate ultimate strength of space frames considering spread of plasticity is presented. The improved displacement field is introduced based on inclusion of second order terms of finite rotations. All the nonlinear terms due to bending and torsional moment as well as axial force are precisely considered. The concept of plastic hinge is introduced and the incremental load/displacement method is applied for the elasto-plastic analysis. The initial yield surface is defined based on the residual stress and the full plastification surface is considered under the combined action of axial force, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for ultimate strength of space frames are compared with available solutions and experimental results.

  • PDF

Post-buckling responses of a laminated composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.733-743
    • /
    • 2018
  • This paper presents post-buckling responses of a simply supported laminated composite beam subjected to a non-follower axially compression loads. In the nonlinear kinematic model of the laminated beam, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The distinctive feature of this study is post-buckling analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. The effects of the fibber orientation angles and the stacking sequence of laminates on the post-buckling deflections, configurations and stresses of the composite laminated beam are illustrated and discussed in the numerical results. Numerical results show that the above-mentioned effects play a very important role on the post-buckling responses of the laminated composite beams.

Geometrically nonlinear analysis of a laminated composite beam

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.27-36
    • /
    • 2018
  • The objective of this work is to analyze geometrically nonlinear static analysis a simply supported laminated composite beam subjected to a non-follower transversal point load at the midpoint of the beam. In the nonlinear model of the laminated beam, total Lagrangian finite element model of is used in conjunction with the Timoshenko beam theory. The considered non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. In the numerical results, the effects of the fiber orientation angles and the stacking sequence of laminates on the nonlinear deflections and stresses of the composite laminated beam are examined and discussed. Convergence study is performed. Also, the difference between the geometrically linear and nonlinear analysis of laminated beam is investigated in detail.

Large displacement Lagrangian mechanics -Part I - Theory

  • Underhill, W.R.C.;Dokainish, M.A.;Oravas, G.Ae.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.73-89
    • /
    • 1996
  • In Lagrangian mechanics, attention is directed at the body as it moves through space. The region occupied by the body is called a configuration. All body points are labelled by the position they would have if the body were to occupy a chosen reference configuration. The reference configuration can be regarded as an extra fictional copy where notes are kept. As the body moves and deforms, it is important to correctly observe the use of each configuration for computational purposes. The description of strain is particularly important. The present work establishes clearly the role of each configuration in total and in incremental forms. This work also details the differences between gradient and configurational calculus.

A Study on the Safety of Reinforced Concrete Structures under Fatigue Load (피로 하중을 받는 철근콘크리트 구조물의 안전성에 관한 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.2
    • /
    • pp.18-25
    • /
    • 1994
  • In this thesis, the fatigue tests were performed on a series of reinforced concrete to Investigate the variation of strength and the safety of reinforced concrete structures under fatigue load. The specimens were of the same rectangular cross-section, of effective height 24cm and width 30cm and their span was 330cm. The three point loading system is used in the fatigue tests. In these tests, the fracture mode of reinforced concrete structures under fatigue load, relationship between the repeated loading cycles and the mid-span displacement of the specimens were observed. According to the test results, the following fatigue behavior of reinforced concrete specimens were observed. By increasing of the number of repeated loading cycles, the mid-span displacement became greater, however the Incremental amounts of the displacement were reduced. It could be also known that the inelastic strain energy of the doubly reinforced rectangular beams was larger than that of the singly reinforced rectangular beams as increasing the number of repeated loading cycles. Compliance of reinforced concrete structures tended to be reduced as increasing the repeated loading cycles, and the compliance of the doubly reinforced rectangular beams was generally smaller than that of the singly reinforced rectangular beams. Based on the above investigation, it could be concluded that the doubly reinforced rectangular beams under fatigue load were more efficient to resist the brittle fracture than the singly reinforced rectangular beams.

  • PDF

Investigation on the masonry vault by experimental and numerical approaches

  • Guner, Yunus;Ozturk, Duygu;Ercan, Emre;Nuhoglu, Ayhan
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Masonry constructions exhibit uncertain behaviors under dynamic effects such as seismic action. Complex issues arise in the idealization of structural systems of buildings having different material types and mechanical properties. In this study, the structural behavior of a vaulted masonry building constructed using full clay brick and lime-based mortar and sitting on consecutive arches was investigated by experimental and numerical approaches. The dimensions of the structure built in the laboratory were 391 × 196 cm, and its height was 234 cm. An incremental repetitive loading was applied to the prototype construction model. Along the gradually increasing loading pattern, the load-displacement curves of the masonry structure were obtained with the assistance of eight linear displacement transducers. In addition, crack formation areas, and relevant causes of its formation were determined. The experimental model was idealized using the finite element method, and numerical analyses were performed for the area considered as linear being under similar loading effect. From the linear analyses, the displacement values and stress distribution of the numerical model were obtained. In addition, the effects of tie members, frequently being used in the supports of curved load-bearing elements, on the structural behavior were examined. Consequently, the experimental and numerical analysis results were comparatively evaluated.

Ultimate Strength Analysis of Stiffened Shell Structures Considering Effects of Residual Stresses (잔류응력을 고려한 보강된 쉘 구조의 극한강도 해석)

  • 김문영;최명수;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.197-208
    • /
    • 2000
  • Choi et al./sup 1)/ presented the total Lagrangian formulation based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account the second order rotation terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome the shear locking phenomena and to eliminate the spurious zero energy mode. In this paper, for the ultimate strength analysis of stiffened shell structures considering effects of residual stresses, the return mapping algorithm based on the consistent elasto-plastic tangent modulus is applied to anisotropic shell structures. In addition, the load/displacement incremental scheme is adopted for non-linear F.E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with the results in literatures.

  • PDF

A Geometrically Nonlinear Analysis for the Eccentric Degenerated Beam Element Considering Large Displacements and Large Rotations (대변위 밀 대회전을 고려한 편심된 격하 보요소의 기하학적 비선형해석)

  • Jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.227-233
    • /
    • 1992
  • To study the large displacement and large rotation problems, geometrically nonlinear formulation of eccentric degenerated beam element has been developed, where the restrictions of infinitesimal rotation increments are removed and the incremental equations are derived using the Taylor series expansion of the displacement function at time t+dt. The geometrically nonlinear analyses are carried out for the cases of cantilever, square frame, shallow arch and 45-degree bend beam and all of them are compared with each of the other results published. The element developed in the present research can be efficiently utilized for analysis of the nonlinear behaviours of structures when displacements and rotations are large.

  • PDF