• 제목/요약/키워드: Incremental Sheet Forming

검색결과 67건 처리시간 0.023초

음각 점진성형에서 치수정밀도에 영향을 미치는 형상 파라미터 분석 (Analysis of Shaping Parameters Influencing on Dimensional Accuracy in Single Point Incremental Sheet Metal Forming)

  • 강재관;강한수;정종윤
    • 산업경영시스템학회지
    • /
    • 제39권4호
    • /
    • pp.90-96
    • /
    • 2016
  • Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Compared to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized parts. ISF needs die-less machine alone, while conventional sheet forming requires highly expensive facilities like dies, molds, and presses. This equipment takes long time to get preparation for manufacturing. However, ISF does not need the full facilities nor much cost and time. Because of the facts, ISF is continuously being used for small batch or prototyping manufacturing in current industries. However, spring-back induced in the process of incremental forming becomes a critical drawback on precision manufacturing. Since sheet metal, being a raw material for ISF, has property to resilience, spring-back would come in the case. It is the research objective to investigate how geometrical shaping parameters make effect on shape dimensional errors. In order to analyze the spring-back occurred in the process, this study experimented on Al 1015 material in the ISF. The statistical tool employed experimental design with factors. The table of orthogonal arrays of $L_8(2^7)$ are used to design the experiments and ANOVA method are employed to statistically analyze the collected data. The results of the analysis from this study shows that the type of shape and the slope of bottom are the significant, whereas the shape size, the shape height, and the side angle are not significant factors on dimensional errors. More error incurred on the pyramid than on the circular type in the experiments. The sloped bottom showed higher errors than the flat one.

무금형 점진 판재 성형에서 공구경로 최적화를 위한 성형한계에 관한 연구 (Studies on the forming limits for optimization of the tool path in Dieless incremental sheet metal forming)

  • 이승진;김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.249-252
    • /
    • 2005
  • Recently, as the industrial demand for small quantity batch production of sheet metal components, the application of dieless forming technology to production of these component rise with the advantages of the reduction in manufacturing cost and time. In dieless forming processes, the determination of moving path of tool plays an important role in producing successfully formed parts. In order to obtain the optimized moving path of tool avoiding forming failure, it is necessary to examine the forming limit of sheet material. Therefore, in this study, as the new criterion to evaluate the formability of sheet material in dieless forming processes FDD(feeding depth diagram) with respect to feeding depth and punch diameter is proposed. Thus, the FDD for the sheet materials of STS304 and Ti-grade2 were obtained from a series of FDT(feeding depth test). In addition the possibility of the application of FLD in judging forming severity in dieless forming processes was investigated by comparing the results of FE analyses based on FLD and experimental FDT.

  • PDF

점진성형에서 형상의 복잡도와 다이의 종류가 성형 정밀도에 미치는 영향 (Influence of the Part Shape Complexity and Die Type on Forming Accuracy in Incremental Sheet Metal Forming)

  • 이경부;강재관
    • 한국생산제조학회지
    • /
    • 제23권5호
    • /
    • pp.512-518
    • /
    • 2014
  • In this paper, the influence of part shape complexity and die type on forming accuracy in incremental sheet metal forming is presented. The part shape complexities are classified into two types, namely, of one and two-step shapes. Correspondingly, die types are classified into three types, namely, of no-, partial, and full die types. The experimental tests are performed separately on negative and positive forming methods. It is shown that for the one-step shape, there are no significant differences in forming errors between the cases of no- and full die types when the negative forming method is used. Furthermore, the full die type is better than the partial die when positive forming is used. For the two-step shape case, the full die type always exhibits better forming accuracy than the no- and partial die types, irrespective of the forming method used.

점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향 (An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.53-57
    • /
    • 2003
  • In order to make a doubly curved sheet metal effectively, a sheet metal farming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the same direction of one principle radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principle radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It just affects the generation of curvature in its own direction mainly with the forming depth and the thickness of the material.

  • PDF

탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석 (Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes)

  • 윤정환;김종봉;양동열;정관수
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF

복잡한 형상제품의 인크리멘탈 성형과 FEM을 이용한 공정 최적화 (Incremental Sheet Forming of Complex Geometry Shape and Its Optimization Using FEM Analysis)

  • 누엔 늑 뚜안;박진기;이혜진;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.207-212
    • /
    • 2009
  • In order to optimize the press formability of incremental sheet forming for complex shape (e.g human face), a combination of both CAM and FEM simulation, is implemented and evaluated from the histories of stress and strain value by means of finite element analysis. Here, the results, using ABAQUS/Explicit finite element code, are compared with fracture limit curve (FLC) in order to predict and optimize the press formability by changing parameters of tool radius and tool down-step according to the orthogonal array of Taguchi's method. Firstly, The CAM simulation is used to create cutter location data (CL data). This data are then calculated, modified and exported to the input file format required by ABAQUS through using MATLAB programming. The FEM results are implemented for negative incremental sheet forming and then investigate by experiment.

  • PDF

점진적 판재 성형 공정에서 스텐리스 극박판의 두께에 따른 성형성 및 주름 발생 특성 분석 (Analysis of Formability and Wrinkle Formation according to the Thickness of Ultra-thin Stainless Steel in the Incremental Sheet forming Process)

  • 이준호;이건일;정문성;정규석;이창환
    • 소성∙가공
    • /
    • 제28권6호
    • /
    • pp.328-335
    • /
    • 2019
  • Demand for ultra-thin materials is increasing due to their light-weight and versatile properties. In this work, the formability of the ultra-thin stainless steel sheets of various thicknesses in the incremental sheet forming (ISF) process is investigated. The effects of the thickness on formability were evaluated with forming experiments of the truncated cone shape with 10° intervals. As the thickness of the material decreased, the maximum forming angle decreased and wrinkles also occurred quickly. The maximum forming angles in the truncated cone shape without the wrinkles for the thickness of 0.05 mm, 0.08 mm, and 0.1mm were 30°, 40°, and 50°, respectively. Wrinkles occurred in a twisted shape along the moving direction of the tool. As the material thickness increased, the size of the wrinkles increased.

반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화 (Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

유전 알고리즘-BP신경망을 이용한 Al3004 판재 점진성형 공정변수에 대한 최적화 연구 (Optimization of Process Parameters of Incremental Sheet Forming of Al3004 Sheet Using Genetic Algorithm-BP Neural Network)

  • 양센;김영석
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.560-567
    • /
    • 2020
  • 점진판재성형은 금형을 제작하지 않고 판재를 가공하는 방법으로서 빠른 시제품 제작과 소량 생산에 적합한 성형법이다. 이러한 점진판재성형의 공정 변수로 공구 직경, 매 스탭당 Z-방향 깊이, 공구 이송 속도, 공구 회전 속도 등은 성형품의 품질에 크게 영향을 미친다. 본 연구에서는 두께가 1.0mm인 Al3004판재를 사용하여 원뿔절두체(VWACF: Varying Wall Angle Conical Frustum) 모델의 점진성형을 실시하였으며, 각각의 변수들의 조합에서 성형성을 판단하였다. BP신경망 (BPNN: Back Propagation Neural Network)를 기반으로 Minitab 소프트웨어를 사용하여 성형 각도를 예측하는 2 차 수학적 모델을 구축하였다. 또한 이 모델을 유전 알고리즘의 목적함수로 사용하였으며 최대 성형 각도로 얻기 위한 최적의 변수 조합을 찾아내었다. 공구 직경은 6mm, 회전 속도는 180rpm, Z-방향 피치는 0.401mm, 이송 속도는 772.4mm/min일 경우 가장 큰 성형 각도인 87.071°를 갖는 컵을 성형할 수 있었다.

점진적 롤 성형 공정의 선박 곡가공 적용을 위한 공정 변수 분석 (Analysis of Process Parameters in the Incremental Roll Forming Process for the Application to Doubly Curved Ship Hull Plate)

  • 심도식;윤석준;이석렬;성대용;한용섭;한명수;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2005
  • In order to make a doubly-cowed sheet metal effectively, the sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process without holder. The experimental equipment has been set up with the roll set which consists of two pairs of support rolls and one center roll. In order to analyze process parameters in the incremental roll forming process for the application to doubly curved ship hull plate, the orthogonal array is adopted. From the FEM results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. Also, the forming load and torque from the FEM simulation are acceptable to the system development of the incremental roll forming process for the forming of ship hull plate.

  • PDF