• Title/Summary/Keyword: Incremental Principal Component Analysis

Search Result 11, Processing Time 0.024 seconds

AN EFFICIENT ALGORITHM FOR SLIDING WINDOW BASED INCREMENTAL PRINCIPAL COMPONENTS ANALYSIS

  • Lee, Geunseop
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.401-414
    • /
    • 2020
  • It is computationally expensive to compute principal components from scratch at every update or downdate when new data arrive and existing data are truncated from the data matrix frequently. To overcome this limitations, incremental principal component analysis is considered. Specifically, we present a sliding window based efficient incremental principal component computation from a covariance matrix which comprises of two procedures; simultaneous update and downdate of principal components, followed by the rank-one matrix update. Additionally we track the accurate decomposition error and the adaptive numerical rank. Experiments show that the proposed algorithm enables a faster execution speed and no-meaningful decomposition error differences compared to typical incremental principal component analysis algorithms, thereby maintaining a good approximation for the principal components.

Incremental Eigenspace Model Applied To Kernel Principal Component Analysis

  • Kim, Byung-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.345-354
    • /
    • 2003
  • An incremental kernel principal component analysis(IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis(KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenvectors should be recomputed. IKPCA overcomes this problem by incrementally updating the eigenspace model. IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the classification problem on nonlinear data set.

  • PDF

Projection spectral analysis: A unified approach to PCA and ICA with incremental learning

  • Kang, Hoon;Lee, Hyun Su
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.634-642
    • /
    • 2018
  • Projection spectral analysis is investigated and refined in this paper, in order to unify principal component analysis and independent component analysis. Singular value decomposition and spectral theorems are applied to nonsymmetric correlation or covariance matrices with multiplicities or singularities, where projections and nilpotents are obtained. Therefore, the suggested approach not only utilizes a sum-product of orthogonal projection operators and real distinct eigenvalues for squared singular values, but also reduces the dimension of correlation or covariance if there are multiple zero eigenvalues. Moreover, incremental learning strategies of projection spectral analysis are also suggested to improve the performance.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.

On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction (비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법)

  • 김병주;심주용;황창하;김일곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.361-368
    • /
    • 2004
  • The purpose of this study is to propose a new on-line nonlinear PCA(OL-NPCA) method for a nonlinear feature extraction from the incremental data. Kernel PCA(KPCA) is widely used for nonlinear feature extraction, however, it has been pointed out that KPCA has the following problems. First, applying KPCA to N patterns requires storing and finding the eigenvectors of a N${\times}$N kernel matrix, which is infeasible for a large number of data N. Second problem is that in order to update the eigenvectors with an another data, the whole eigenspace should be recomputed. OL-NPCA overcomes these problems by incremental eigenspace update method with a feature mapping function. According to the experimental results, which comes from applying OL-NPCA to a toy and a large data problem, OL-NPCA shows following advantages. First, OL-NPCA is more efficient in memory requirement than KPCA. Second advantage is that OL-NPCA is comparable in performance to KPCA. Furthermore, performance of OL-NPCA can be easily improved by re-learning the data.

Efficient Malware Detector for Android Devices (안드로이드 모바일 단말기를 위한 효율적인 악성앱 감지법)

  • Lee, Hye Lim;Jang, Soohee;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.4
    • /
    • pp.617-624
    • /
    • 2014
  • Smart phone usage has increased exponentially and open source based Android OS occupy significant market share. However, various malicious applications that use the characteristic of Android threaten users. In this paper, we construct an efficient malicious application detector by using the principle component analysis and the incremental k nearest neighbor algorithm, which consider an required permission, of Android applications. The cross validation is exploited in order to find a critical parameter of the algorithm. For the performance evaluation of our approach, we simulate a real data set of Contagio Mobile.

Feature Extraction on High Dimensional Data Using Incremental PCA (점진적인 주성분분석기법을 이용한 고차원 자료의 특징 추출)

  • Kim Byung-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1475-1479
    • /
    • 2004
  • High dimensional data requires efficient feature extraction techliques. Though PCA(Principal Component Analysis) is a famous feature extraction method it requires huge memory space and computational cost is high. In this paper we use incremental PCA for feature extraction on high dimensional data. Through experiment we show that proposed method is superior to APEX model.

Modified Kernel PCA Applied To Classification Problem (수정된 커널 주성분 분석 기법의 분류 문제에의 적용)

  • Kim, Byung-Joo;Sim, Joo-Yong;Hwang, Chang-Ha;Kim, Il-Kon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.243-248
    • /
    • 2003
  • An incremental kernel principal component analysis (IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis (KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenspace should be recomputed. IKPCA overcomes these problems by incrementally computing eigenspace model and empirical kernel map The IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the feature extraction and classification problem on nonlinear data set.

Face Tracking and Recognition in Video with PCA-based Pose-Classification and (2D)2PCA recognition algorithm (비디오속의 얼굴추적 및 PCA기반 얼굴포즈분류와 (2D)2PCA를 이용한 얼굴인식)

  • Kim, Jin-Yul;Kim, Yong-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.423-430
    • /
    • 2013
  • In typical face recognition systems, the frontal view of face is preferred to reduce the complexity of the recognition. Thus individuals may be required to stare into the camera, or the camera should be located so that the frontal images are acquired easily. However these constraints severely restrict the adoption of face recognition to wide applications. To alleviate this problem, in this paper, we address the problem of tracking and recognizing faces in video captured with no environmental control. The face tracker extracts a sequence of the angle/size normalized face images using IVT (Incremental Visual Tracking) algorithm that is known to be robust to changes in appearance. Since no constraints have been imposed between the face direction and the video camera, there will be various poses in face images. Thus the pose is identified using a PCA (Principal Component Analysis)-based pose classifier, and only the pose-matched face images are used to identify person against the pre-built face DB with 5-poses. For face recognition, PCA, (2D)PCA, and $(2D)^2PCA$ algorithms have been tested to compute the recognition rate and the execution time.

Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA (퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계)

  • Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.