• 제목/요약/키워드: Incremental Inductive Learning, Rough Set Theroy, Fuzzy Learning

검색결과 1건 처리시간 0.014초

INCREMENTAL INDUCTIVE LEARNING ALGORITHM IN THE FRAMEWORK OF ROUGH SET THEORY AND ITS APPLICATION

  • Bang, Won-Chul;Bien, Zeung-Nam
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.308-313
    • /
    • 1998
  • In this paper we will discuss a type of inductive learning called learning from examples, whose task is to induce general description of concepts from specific instances of these concepts. In many real life situations, however, new instances can be added to the set of instances. It is first proposed within the framework of rough set theory, for such cases, an algorithm to find minimal set of rules for decision tables without recalculation for overcall set of instances. The method of learning presented here is base don a rough set concept proposed by Pawlak[2][11]. It is shown an algorithm to find minimal set of rules using reduct change theorems giving criteria for minimum recalculation with an illustrative example. Finally, the proposed learning algorithm is applied to fuzzy system to learn sampled I/O data.

  • PDF