• 제목/요약/키워드: Incremental Forging

검색결과 18건 처리시간 0.026초

일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측 (Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft)

  • 이호진;국대선;안동규;정종훈;설상석
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

비대칭 축류형 제품의 점진성형공정 개발 (Development of a Flexible Incremental Forging Process to Manufacture Asymmetric Shafts)

  • 알리 알툰;이석렬;홍진태;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.95-98
    • /
    • 2005
  • Shafts having asymmetry or odd number of symmetry in the cross-section can not be simply manufactured by conventional incremental radial forging. In order to manufacture such shafts, the new concept of incremental forging with one punch and a flexible fixture is developed by suggesting a flexible fixture, instead of two opposed punches used in radial forging, so that the flexible fixture only supports the workpiece while the punch is moving during forming. A new flexible fixture is designed using the steel shots and vacuum technology. An equilateral triangular cross-section is selected as the sample shape to be manufactured by the proposed manufacturing method. The desired triangular cross-sectional shaft is manufactured with the errors of $3.0\%$.

  • PDF

점진단조에 대한 기초 연구 (A basic study on incremental forging)

  • 조재현;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.341-344
    • /
    • 2009
  • Large load is required in forging of large-scale components, which becomes a critical restriction in practice. However, the load can be greatly reduced by adopting incremental forging technologies. In the present study, two methods of incremental forging were investigated for the purpose of reducing the load required. One was to use nine strokes with a flat die and the other was to use three strokes with a curved die. The die moves vertically in the former while it moves vertically as well as rolls horizontally in the latter. Deformation of the slab in each case was analyzed by rigid-plastic finite element method and as a result, variations of load and distributions of effective strain were predicted.

  • PDF

슬래브의 점진단조에 나타나는 변형특성 (Deformation Characteristics in Incremental Forging of a Slab)

  • 조재현;박종진
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.513-518
    • /
    • 2009
  • Large load is required in forging of large-scale components which becomes a critical restriction in practice. In the present study, two methods of incremental forging were investigated for the purpose of reducing the load required for forging of large and thick plates. The forging was applied primarily to obtain fine grains by imposing large amount of plastic deformation to the plates. One was to use nine strokes with a flat die and the other was to use three strokes with a curved die. The die moves vertically in the former while it moves vertically as well as rolls horizontally in the latter. Deformation of the slab in each case was analyzed by rigid-plastic finite element method and as a result, variations of load and slab holding force, and distributions of effective strain and thickness were predicted.

대형 원뿔형 알루미늄 실린더의 멘드렐 단조 공정 개발 (Development of Mandrel Forging Process for Large Conical Aluminum Shell)

  • 남지원;조종래;이경훈;이인환
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.276-280
    • /
    • 2018
  • This paper has developed a forging process for conical shells for making aluminum cylindrical large shells. An incremental forging process was applied to reduce forging loads and die cost. The preform is designed based on the crosssectional area of the final forged shape. Inner diameter of the preform for mandrel forging is constant, and outer diameter is conical so that it matches the cross-sectional area of the product. However, simulation confirmed that the larger diameter is smaller than predicted and the length is larger than predicted because in the initial stage of forging, the large diameter portion first comes into contact with the anvil at the initial stage of forging and stretches in longitudinal direction. So, it has developed a rule to design the preform considering 3-D deformation instead of plane strain deformation at the beginning stage of mandrel forging. The developed mandrel forging process can be applied to more similar products and economic benefits may be obtained.

점진적 복합성형법을 이용한 대형 돔형 단조품의 공정개발 (Process Development of the Large-Size Dome Shaped Forging-Products Using the Incremental and Combined Forming Method)

  • 박치용;양동열;은일상
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1685-1696
    • /
    • 1994
  • In this paper, a new forming process of the large-size forgings within the limit of forming loads is developed by introducing the incremental forging method and combined forming method. For the development of the forming process, various related processes are proposed and modelling experiments of plasticine and corresponding numerical simulation ate carried out. Thus, an optimal process considering the productivity and economical efficiency is recommended from the study of formability and forming loads, etc. The selected process is subjected to a modelling experiment of lead and 1/7 scale prototype experiment of the real material so as to verify the effectiveness of a selected process as well as to determine the design parameters. The developed process is then applied the forging product of dome shape. Dome-shaped forgings can be produced by the developed process within the limit loads and with the simple tools.

자동 영역확장법을 이용한 점진 성형공정의 효율적 해석 (Effective Analysis of Incremental Forming Process using the Automatic Expansion of Domain Scheme)

  • 이경훈;이석렬;홍진태;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.812-815
    • /
    • 2005
  • The incremental forming process employs several tens or hundreds of continuous local strokes, so the entire process is difficult to analyze due to much computation time and large computer memory. The objective of this work is to propose a new numerical scheme of the finite element method, automatic expansion of domain (AED), and to reduce computation time and computer memory. In the AED scheme, an effective analysis domain in each local forming step is defined and then the domain is automatically expanded in accordance with the repeated process. In order to verify the validity of the criterion for the AED scheme and the applicability of the AED scheme, two-dimensional incremental plane-strain forging process is first analyzed using the proposed scheme with various criteria and full domain. In addition, three-dimensional incremental radial forging process is analyzed to verify the applicability of the proposed scheme to a practical incremental forging process.

  • PDF

점진적 팽창단조법에 의한 대형 노즐형제품의 성형공정 개발에 관한 실험적 연구 (An Experimental Study of Forming Process Development in Large Nozzle-Shaped Product Using the Incremental Forging Method for Expanding)

  • 박치용;양동열;이경훈;은일상
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.110-119
    • /
    • 1994
  • In this paper, a new forming process of large-size forgings of converged nozzle-shape is developed by the experimental study using the incremental forging method and combined forming method. The development of the forming process is focused on the manufacturing of large-size forgings by the press with medium load capacity. Various related processes are proposed and modelling experiments using plasticine are carried out. Thus, the incremental forging method for expanding is recommanded from the study of formability and forming load, etc. The selected process is then subjected to modelling experiments of lead and the design parameters such as preform for final process, die-width of the upper die and reduction amount of each stroke are determined. In order to verify the effectiveness of the selected process, 1/7 scale prototype experiment of the real material is carried out. Forgings of converged nozzle shape can be produced by the developed process within the limit loads and with the simple tools.

  • PDF

회전 성형법에 의한 분말단조 제품특성에 관한 연구 (A Study on the Properties of Cold Forging P/M Products by Incremetal Forming Process)

  • 윤덕재;나경환;김영은
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.31-40
    • /
    • 1995
  • Powder metallurgy process has many advantages such as hight efficientyof material, mass productivity and complex shape production with good mechanical properties. Among the powder forming processes, incremental forging allows the consolidation to be achieved with amaller force then those required by conventional forging. In particular the proces known as rotary forging is an unique and prodominant process known as rotary forging is an unique and prodominant process in which the working constraints approximate to those in normal closed die forging. This study is concerned with the powder compaction by rotary forging process. An experimental rotary forging press with 500kN load capacity has been developed, which is equippe dwith the rotational conicla die inclined to the central axis of the press at arbitrary angle. It is found that the highly densified P/M parts can be obtained by rotary forging process and the material properties are superior to those of the conventrional sintered parts. The detailedcomparision of the mechanical properties by rotary forging process with those by conventional process are given.

  • PDF

1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합 (Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding)

  • 강성훈;임형철;이호원
    • 소성∙가공
    • /
    • 제22권8호
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.