• 제목/요약/키워드: Incremental Dimension Reduction Method

검색결과 2건 처리시간 0.016초

스트리밍 데이터에 대한 최소제곱오차해를 통한 점층적 선형 판별 분석 기법 (Incremental Linear Discriminant Analysis for Streaming Data Using the Minimum Squared Error Solution)

  • 이경훈;박정희
    • 정보과학회 논문지
    • /
    • 제45권1호
    • /
    • pp.69-75
    • /
    • 2018
  • 시간에 따라 순차적으로 들어오는 스트리밍 데이터에서는 전체 데이터 셋을 한꺼번에 모두 이용하는 배치 학습에 기반한 차원축소 기법을 적용하기 어렵다. 따라서 스트리밍 데이터에 적용하기 위한 점층적 차원 감소 방법이 연구되어왔다. 이 논문에서는 최소제곱오차해를 통한 점층적 선형 판별 분석법을 제안한다. 제안 방법은 분산행렬을 직접 구하지 않고 새로 들어오는 샘플의 정보를 이용하여 차원 축소를 위한 사영 방향을 점층적으로 업데이트한다. 실험 결과는 이전에 제안된 점층적 차원축소 알고리즘과 비교하여 이 논문에서 제안한 방법이 더 효과적인 방법임을 입증한다.

개념 변동 고차원 스트리밍 데이터에 대한 차원 감소 방법 (Dimension Reduction Methods on High Dimensional Streaming Data with Concept Drift)

  • 박정희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권8호
    • /
    • pp.361-368
    • /
    • 2016
  • 고차원데이터에 대한 차원 감소 기법들은 많이 연구되어져 온 반면, 개념 변동을 가진 고차원 스트리밍 데이터에서 적용할 수 있는 차원 감소 기법에 대한 연구는 제한적이다. 이 논문에서는 스트리밍 데이터에서 적용할 수 있는 점층적 차원 감소 기법들을 살펴보고, 개념 변동 고차원 스트리밍 데이터에 대해 분류 성능을 향상시킬 수 있도록 차원 감소를 효과적으로 적용하는 방법을 제안한다.