• Title/Summary/Keyword: Increase diameter

Search Result 2,364, Processing Time 0.029 seconds

Comparison of Ginsenoside Content and Ratio of Root Tissue According to Root Age and Diameter in Panax ginseng C. A. Meyer (인삼의 연근과 직경에 따른 뿌리 조직의 비율 및 Ginsenoside 함량 변화)

  • Han, Jin Soo;Tak, Hyun Seong;Lee, Gang Seon;Kim, Jung-Sun;Woo, Ra Jeong;Choi, Jae Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.342-347
    • /
    • 2013
  • This study was carried out to investigate change of ginsenoside contents according to tissue ratio in ginseng root by age and diameter. The epidermis-cortex and xylem-pith extent, fresh weight, dry weight of ginseng increased with the root age increase. They increased higher in xylem-pith than in epidermis-cortex. The ratio of epidermis-cortex decreased and xylem-pith increased as the main root diameter increased. In case of same diameter, the xylem-pith ratio increased by the increase of root age. The epidermis-cortex ratio was 4 > 5 > 6 years, respectively. The total 10 ginsenosides of epidermis- cortex increased with the root age increase. However, the total ginsenoside of xylem-pith decreased and it was 2~5 times lower than epidermis-cortex. The most of ginsenoside contents existed in epidermis-cortex. The diameter decrease in main root is related to the increase of epidermis-cortex ratio. It leads to increase of ginsenoside contents. In order to select high level of ginsenoside cultivar, it suggested that it should be selected main root having narrow diameter and lower epidermis- cortex ratio.

Effect of Si content on Nugget Diameter of Electric Resistance Spot Welded Dual Phase Steel (DP강의 전기저항점용접부 너깃직경에 미치는 Si 함량의 영향)

  • Kong, Jong-Pan;Kang, Gil-Mo;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.99-105
    • /
    • 2011
  • In this study, effect of Si content on nugget diameter in electric resistance spot welded dual-phase(DP) steel was investigated. The cold rolled DP steels with different Si content (0.5, 1.0, 1.5, 2.0 wt.%) were used and thickness of those sheet was 1.2mm. With increasing Si content, nugget diameter was increased at the same welding current. This is attributed to increase of heat input result from high resistivity. Also, nugget diameter was increased with an increase in Si content for the same heat input. For this reason, the melting point of DP steel is lowered with an increase in the Si content. And solid DP steel can easily be transformed to a liquid phase because the low melting point. Finally, a prediction formula for the nugget diameter(N.D.) could be obtained in terms of heat input(Q) and melting point(M.P) as follows: N.D.(mm) = 0.11Q(J) - 0.0031 M.P.($^{\circ}C$) + 0.32.

The Distribution of Boundaty Stresses around the Lightening Hole in a Triangular Bracket. (Bracket의 Lightening Hole 주변(周邊)에서의 응력분포(應力分布))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.3 no.1
    • /
    • pp.11-18
    • /
    • 1966
  • In a polarized light field, triangular plate bracket specimen of CR-39 with lightening hole were subjected to tension. The variables of the models used in the experiment were taken in the range of length-depth $ratio=0.583{\sim}1.715$, eccentricity of lightening hole from the geometrical center of $bracket=-1/4"{\sim}+1/4"$, and the lightening hole $diameter=1/2"{\sim}2"$. The isoclinics were drawn and from those the stress trajectories were constructed. Then the distributions of boundary stress around the lightening holes were determined from the isochromatic fringe pattern. The conclusions reached in this investigation are as follows: 1. Maximum stresses of the hole boundary are gradually increased when the diameter of the lightning hole increase. 2. Maximum stresses of the lightning hole boundary are decreased gradually when the eccentricity of the lightning hole from the geometrical center of the bracket to the farther side from the free end. 3. If the minimum distances from the free end of the brackets to the lightening hole boundaries are equal, the variation of the maximum stresses are in a small range for the change of lightening hole diameter and its location. 4. When the length-depth ratios are smaller than 0.8, the maximum stresses increase steeply. In the range of $0.8{\sim}1.2$ maximum stresses increase gradually and thereafter increase rapidly when the length-depth ratio of the bracket increase for the same diameter of a lightening hole.

  • PDF

Effect of Injector Energizing Duration on the Atomization Characteristics of Biodiesel Fuel (인젝터 통전기간이 바이오디젤 연료 미립화에 미치는 영향)

  • Suh, Hyun-Kyu;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • This study investigates the influence of energizing duration on the fuel atomization characteristics of biodiesel injected through a high pressure common-rail injector. In order to analyze the effect of energizing duration on the fuel injection rate performance, the injection rate of biodiesel fuel is obtained from the pressure variation in the tube filled with fuel in injection measuring system. On the other hand, the atomization characteristics of biodiesel was measured and compared in terms of Sauter mean diameter(SMD), arithmetic mean diameter(AMD), droplet mean velocity, and detected droplets number by applying a phase Doppler particle analyzer(PDPA). It was revealed that the injection mass and maximum injection rate increase with increase of the energizing duration. Moreover, the increase of energizing duration improves the atomization performance of biodiesel fuel because it induces higher droplets momentum and velocity.

  • PDF

Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water (벤츄리 노즐 출구 형상과 작동 조건에 따른 캐비테이션 기포 발생 특성 연구)

  • Changhoon Oh;Joon Hyun Kim;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.94-102
    • /
    • 2023
  • Three design parameters were considered in this study: outlet nozzle angle (30°, 60°, 80°), neck length (1 mm, 3 mm), and flow rate (0.5, 0.6, 0.7, 0.8 lpm). A neck diameter of 0.5 mm induced cavitation flow at a venture nozzle. A secondary transparent chamber was connected after ejection to increase bubble duration and shape visibility. The bubble size was estimated using a Gaussian kernel function to identify bubbles in the acquired images. Data on bubble size were used to obtain Sauter's mean diameter and probability density function to obtain specific bubble state conditions. The degree of bubble generation according to the bubble size was compared for each design variable. The bubble diameter increased as the flow rate increased. The frequency of bubble generation was highest around 20 ㎛. With the same neck length, the smaller the CV number, the larger the average bubble diameter. It is possible to increase the generation frequency of smaller bubbles by the cavitation method by changing the magnification angle and length of the neck. However, if the flow rate is too large, the average bubble diameter tends to increase, so an appropriate flow rate should be selected.

Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-22 and R-407C in a Diameter of 4.3 mm (4.3 mm 세관내 R-22와 R-407C의 증발 열전달과 압력강하)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.26-31
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a small diameter copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow mete, a condense and a double pipe type evaporate (test section). The test section consists of a smooth copper tube of 4.3 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300[kg/m^{2}s]$ and the saturation temperature of evaporator were $5[^{\circ}C]$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the Increase in mass flux and vapor quality. The evaporation heat transfer coefficient of R-22 is about $7.3\sim47.1%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is about $8\sim20%$ higher than that of R-407C.

  • PDF

Analysis for the Flow and Wall Shear Stress with a Dilatation of an Abdominal Aortic Aneurysm (복부대동맥류의 확장에 따른 유동 및 벽면전단응력 해석)

  • Shin, Sang-Chul;Kim, Kyong-Woo;Lee, Gun-Hyee;Moh, Jeong-Hah;Kim, Dong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.560-565
    • /
    • 2001
  • The objective of the present study is to investigate the characteristics for flow and wall shear stress in the aneurysm which is a local dilatation of the blood vessel. The numerical simulation using the commercial software for the laminar and steady flow were carried out over the diameter ratios(ratio of maximum diameter of aneurysm to the diameter of blood vessel) ranging from 1.5 to 2.5 and Reynolds number ranging from 900 to 1800. It was shown that a recirculating vortex occupied the entire bulge with its core located closer to the distal end of the bulge and the strength of vortex increased with increase of the Reynolds number and diameter ratio. Especially, for the Reynolds number of 1800 and diameter ratio of 2.5, the very weak secondary recirculating flow was produced at the left upper of the aneurysm. The position of a maximum wall shear stress was the distal end of the aneurysm(z=18mm) regardless of the Reynolds number and diameter ratios. But the maximum values of the wall shear stress increased in proportion to the increase of Reynolds number and diameter ratio.

  • PDF

Diameter Evaluation for PHWR Pressure Tube Based on the Measured Data (측정 데이터 기반 중수로 압력관 직경평가 방법론 개발)

  • Jong Yeob Jung;Sunil Nijhawan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Pressure tubes are the main components of PHWR core and serve as the pressure boundary of the primary heat transport system. However, because pressure tubes have changed their geometrical dimensions under the severe operating conditions of high temperature, high pressure and neutron irradiation according to the increase of operation time, all dimensional changes should be predicted to ensure that dimensions remain within the allowable design ranges during the operation. Among the deformations, the diameter expansion due to creep leads to the increase of bypass flow which may not contribute to the fuel cooling, the decrease of critical channel power and finally the deration of the power to maintain the operational safety margin. This study is focused on the modeling of the expansion of the pressure tube diameter based on the operating conditions and measured diameter data. The pressure tube diameter expansion was modeled using the neutron flux and temperature distributions of each fuel channel and each fuel bundle as well as the measured diameter data. Although the basic concept of the current modeling approach is simple, the diameter prediction results using the developed methodology showed very good agreement with the real data, compared to the existing methodology.

The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient (송출공의 회전이 송출계수와 압력계수에 미치는 영향)

  • Ha, Kyoung-Pyo;Ku, Nam-Hee;Kauh, S.Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

SPRAY AND COMBUSTION CHARACTERISTICS OF HYDROCARBON FUEL INJECTED FROM PRESSURE-SWIRL NOZZLES

  • Laryea Gabriel Nii;No Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • This paper presents spray and combustion characteristics of hydrocarbon fuel injected from pressure-swirl nozzles. Three commercial nozzles with orifice diameters of 0.256, 0.308 and 0.333mm and injection pressures ranging from 0.7 to 1.3 MPa were selected f9r the experiments. Spray characteristics such as breakup length. spray angle and drop size (SMD) were analyzed using photo image analyses and Malvern Panicle Size Analyzer. The drop size was measured with and without a blower at the same measuring locations. The flame length and width were measured using photo image analyses. The temperature distribution along the axial distance and the gas emission such as CO, $CO_2\;and\;NO_x$ were studied. The breakup length decreased with an increase in injection pressure for each nozzle but increased with an increase in nozzle orifice diameter. The spray angle increased and SMD decreased with an increase in injection pressure. The flame with an increased linearly with an increase in injection pressure and in nozzle orifice diameter. The flame temperature increased with an increase in injection pressure but decreased along the axial distance. The maximum temperatures occurred closer to the burner exit and flame at axial distance of 242mm from the diffuser tip. The experimental results showed that the level of CO decreased while that of $CO_2\;and\;NO_x$ increased with an increase in injection pressure and nozzle orifice diameter.

  • PDF