• Title/Summary/Keyword: Inclined shaft propeller

Search Result 8, Processing Time 0.016 seconds

Experimental Study of the POW Characteristics using High-capacity Inclined-shaft Dynamometer (고용량 경사류용 동력계를 이용한 프로펠러 단독시험 특성의 실험적 연구)

  • Ahn, Jong-Woo;Kim, Ki-Sup;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.168-174
    • /
    • 2019
  • In order to investigate Propeller Open Water (POW) characteristics for the high-speed propeller in Large Cavitation Tunnel (LCT), the high-capacity inclined-shaft dynamometer was designed and manufactured. Its measuring capacities of thrust and torque are ${\pm}2200N$ and ${\pm}120N-m$, respectively. The driving motor is directly connected to the propeller shaft. Inclined angle of the propeller shaft can be adjusted up to ${\pm}10^{\circ}$. As the pressure inside LCT can be adjusted in the range of 0.1~3.0bar, we can carry out the POW test at high Reynolds number (above $1.0{\times}10^6$) without propeller cavitation and the cavitation test in uniform flow. After the new dynamometer setup in LCT, the Reynolds number variation test and propeller open-water test were conducted at the inclined angle of $0^{\circ}$ and $6^{\circ}$. The present POW results of the new dynamometer are compared with those of the existing high-capacity dynamometer in LCT and of the dynamometer in the towing-tank. Through systematic model tests and comparison with their results, the performance of the new inclined-shaft dynamometer was verified. It is thought the POW test for the high-speed propeller should be better conducted at high Reynolds number.

Numerical study of propeller boss cap fins on propeller performance for Thai Long-Tail Boat

  • Kaewkhiaw, Prachakon
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.373-392
    • /
    • 2021
  • The present paper purposes a numerical evaluation of the Thai Long-Tail Boat propeller (TLTBP) performance by without and with propeller boss cap fins (PBCF) in full-scale operating straight shaft condition in the first. Next, those are applied to inclined shaft conditions. The actual TLTBP has defined an inclined shaft propeller including the high rotational speed, therefore vortex from the propeller boss and boss cap (hub vortex) have been generated very much. The PBCF designs are considered to weaken of vortex behind the propeller boss which makes the saving energy for the propulsion systems. The blade sections of PBCF developed from the original TLTBP blade shape. The integrative for the TLTBP and the PBCF is analyzed to increase the performance using computational fluid dynamics (CFD). The computational results of propeller performance are thoroughly compared between without and with PBCF. Moreover, the effects of each PBCF component are computed to influence the TLTBP performance. The fluid flows around the propeller blades, propeller boss, boss cap, and vortex have been investigated in terms of pressure distribution and wake-fields to verify the increasing efficiency of propulsion systems.

Inclination angle influence on noise of cavitating marine propeller

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-65
    • /
    • 2020
  • In this study, the effects of inclined shaft angle on the hydro-acoustic performance of cavitating marine propellers are investigated by a numerical method developed before and Brown's empirical formula. The cavitating blades are represented by source and vortex elements. The cavity characteristics of the blades such as cavitation form, cavity volume, cavity length etc., are computed at a given cavitation number and at a set advance coefficient. A lifting surface method is applied for these calculations. The numerical lifting surface method is validated with experimental results of DTMB 4119 model benchmark propeller. After calculation of hydrodynamic characteristics of the cavitating propeller, noise spectrum and overall sound pressure level (OASPL) are computed by Brown's equation. This empirical equation is also validated with another numerical results found in the literature. The effects of inclined shaft angle on thrust coefficient, torque coefficient, efficiency and OASPL values are examined by a parametric study. By modifying the inclination angles of propeller, the thrust, torque, efficiency and OASPL are computed and compared with each other. The influence of the inclined shaft angle on cavity patterns on the blades are also discussed.

The Effect of Trailing Wake Asymmetry on a Propeller Blade Forces in Inclined Inflow (비대칭 후류를 고려한 경사축 추진기의 유동해석)

  • Sang-Woo Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • Unsteady propeller blade forces arising from shaft inclination have been found to be an important contribution tn total blade forces. The position of the wake relative to a blade oscillates with the first blade frequency, thus giving rise to unsteady blade forces which is significant relative to the forces produced directly by flow inclination. In order to find a wake geometry due to shaft inclination, a non-axisymmetric wake model is developed and applied to a specific case, which has experimental values. Predicted cavity shapes and unsteady forces acting on the blades of an inclined shaft propeller are compared to those predicted by other numerical methods, as well as those measured in experiments.

  • PDF

Influence of Thru Holes Near Leading Edge of a Model Propeller on Cavitation Behavior (균일류에서 프로펠러 앞날 근처 관통구가 모형 프로펠러 캐비테이션에 미치는 영향)

  • Ahn, Jong-Woo;Park, Il-Ryong;Park, Young-Ha;Kim, Je-In;Seol, Han-Shin;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.281-289
    • /
    • 2019
  • In order to investigate the influence of thru holes near leading edge of model propeller on cavitation behavior, a model propeller with thru holes was manufactured and tested at Large Cavitation Tunnel (LCT). The pressure distribution around the thru hole on propeller blade was numerically calculated to help understand the local flow characteristics related to cavitation behavior. The model propeller is a five bladed propeller which has 2 blades with thru holes and 3 blades with smooth surface. The cavitation observation tests were conducted at angles of $0^{\circ}$ & $6^{\circ}$ using an inclined-shaft dynamometer in LCT. There are big difference on the suction side cavitation behavior each other due to the existence of thru hole. While the blades with thou holes start generation of the sheet cavitation from the leading edge on the suction side, the blades with smooth surface generate the cloud cavitation from the mid-chord. Cavitation on the blades with thru holes shows more similar behavior to those of the full-scale propeller of which the pipe line for air injection is closed. The numerical analysis result shows that the sharp pressure drop occurs around thru holes on the blade. Consequently, the thru hole around leading edge stimulates the cavitation occurrence and stabilizes the cavitation behavior. Based on these results, the effect of thru holes on propeller cavitation behavior behind a model ship should be studied in the future.

Correlation study between propeller noise and cavitation erosion with inclined propeller model test (경사축 추진기 모형시험에서 추진기 소음과 캐비테이션 침식 상관관계 연구)

  • Seol, Hanshin;Paik, Bu-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.328-333
    • /
    • 2019
  • In this paper, to investigate the cavitation erosion phenomenon on the ship propeller, the correlation between the propeller noise and the cavitation intensity was analyzed. Cavitation erosion is closely related to cavitation collapsing intensity, which can be defined as the frequency and intensity of cavitation collapse. The pressure wave generated by cavitation collapse appears as a continuous acoustic pulse and this result is analyzed with the cavitation behavior to determine the relationship of the propeller noise to cavitation collapse intensity. This technique is applied to the propeller erosion test using the inclined shaft propeller model.

Minimization of Wave-making Resistance for "Inclined Keel" Containership ("Inclined Keel" 컨테이너선의 조파저항 최소화를 위한 선형최적화)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Kim, Hee-Jung;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.97-104
    • /
    • 2009
  • Ever increasing fuel prices, almost doubled in the last three years, and global pressure to reduce their environmental impact have been enforcing commercial vessel operators and designers to re-assess current vessel designs with emphasis on their propulsion systems and operational practices. In this paper the "Inclined Keel Hull (IKH)" concept, which facilitates to use larger propeller diameter in combination with lower shaft speed rates and hence better transport efficiency, is explored for a modern 3600 TEU container vessel with the aim of fitting an 13 % larger diameter propeller (and hence resulting 20% lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration. It appears that successful application of the "inclined keel Hull" concept is a fine balance amongst the maximum gain in propulsive efficiency, minimum increase in hull resistance and satisfaction of other naval architectural and operational requirements. In order to make the concept economically more viable, this paper concentrates on the fore body design with the possible combination of increase of volume in its fore body to recover the expected volume loss in the aft body due to the space for larger propeller and its low wave-making resistance to minimize the efficiency loss using a well-established optimization software.

Development of New Cavitation Erosion Test Method for Analyzing the Durability of Erosion Resistance Paint (내침식페인트 성능 판별에 적합한 새로운 캐비테이션 침식시험기법 개발)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Kim, Ki-Sup;Kim, Tae-Gyu;Kim, Kyung-Rae;Jang, Young-Hun;Lee, Sang-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.132-140
    • /
    • 2010
  • The very erosive cavitation is simulated by an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI. The inclined shaft for propeller makes strong cavitaion, which occurs around the root of a propeller blade. The cavitation begins at the leading edge of the propeller and contracted toward the trailing edge through the reentrant jet action. The cavity focused on the region near the trailing edge collapsed over the blade surface. As the impact pressure by the cavitation collapsing is too strong, it can damage the blade surface in the form of pit. This cavitation impacts created by the collapsing process are similar to the full-scale ones and are different from those by other erosion test methods. The newly developed cavitation erosion test method can be applied to evaluate the materials such as metals, ceramics and coatings in terms of cavitation resistance.