• Title/Summary/Keyword: Inclined Concentric Annulus

Search Result 3, Processing Time 0.018 seconds

Natural Convection in the Annulus between Concentric Inclined Cylinders (경사진 동심원통 사이의 환상공간에서 자연대류 열전달)

  • Kim, Chan-Won;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 1987
  • Natural convection in the annulus between concentric inclined cylinders has been studied by the numerical analysis. Governing equations are numerically solved by means of successive over-relaxation methods for a range in orientation from horizontal to vertical. It is found that flow patterns can also be observed the co-axial double spiral. As the angle of inclination is increased, the center of the eddy is shifted into the lower part of annulus and flow structure is apparently changed. In the present study, the maximum local Nusselt numbers for the inner and outer walls at the vertical cylinder increase more than those at the horizontal cylinder by 71%, 42% respectively. Consequently the effect of inclination on the heat transfer is considerably large.

  • PDF

Solid-liquid two phase helica l flow in a Rotating Annulus (Slim hole 환형관내 고-액 2상 유동에 관한 연구)

  • Han, Sang-Mok;Woo, Nam-Sub;Hwang, Young-Kyu;Kim, Young-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.369-372
    • /
    • 2008
  • An experimental study is carried out to study two-phase vertically upward hydraulic transport of solid particles by water in a vertical and inclined (0${\sim}$60 degree) concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in shear-thinning fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, and so on. Annular fluid velocities varied from 0.2 m/s to 1.5 m/s for the actual drilling operational condition. Macroscopic behavior of solid particles, averaged flow rate, and particle rising velocity are observed. Main parameters considered in this study were radius ratio, inner-pipe rotary speed, fluid flow regime, and particle injection rate. For both water and CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become

  • PDF

Natural Convection in Concentric Annuli with the Nonuniform Temperature Distribution of the Inner Cylinder (내관의 온도가 불균일한 동심환상공간에서의 자연대류)

  • 김찬원;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1012-1022
    • /
    • 1989
  • Numerical analysis has been performed on three-dimensional natural convection in inclined concentric annuli with the nonuniform temperature distribution of the inner cylinder. The governing equations are numerically solved by successive over-relaxation methods for various inclination angles at $R_{a}$=3*10$^{4}$, $P_{r}$=7.0 and $r_{1}$ / $r_{2}$=0.6. Temperature and Nusselt number distributions are obtained and calculated results are compared with those of published uniform temperature distributions. It is found that the mean Nusselt numbers for the nonuniform temperature distributions increase more than those for the uniform temperature distributions by about 9. 6% at .delta.= 0.deg., 7.5% at .delta. = 30.deg. and 4.6% at .delta. = 60.deg.. In the case of .delta. = 0.deg., the maximum local Nusselt numbers on the inner and outer cylinder walls show at .xi. = 0.5, 1.5 of .psio=100 .deg. and .xi. = 0.4, 1.6 of .psi. = 180 .deg.. But in the case of .delta. = 30.deg. and .delta. = 60.deg., the maximum local Nusselt numbers on the inner and other cylinder walls show at .xt. = 0.0 of .psi. = 180 .deg. and .xi. = 2.0 of .psi. = 180 .deg...