• Title/Summary/Keyword: Inclination Angle

Search Result 756, Processing Time 0.029 seconds

Study on 3D Printer Producing of Assistive Devices for Vertical Incidence of Law Method (Law법 수직입사를 위한 보조기구의 3D 프린터 제작 연구)

  • Kim, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.489-494
    • /
    • 2020
  • The Law method is observing the temporal bone. There are two types of methods: the double angle method, which manipulates the center ray angle of the tube twice, and the single angle method, which manipulates once. The purpose is to increase the reproducibility of the image by making vertical incidence by making an assistive device using a 3D printer. Two assistive devices with a wedge-shaped 8.5 × 10 × 2.3 cm, an inclined surface of 7.5 cm, and an inclination angle of 15° were fabricated. Assistive devices can be combined with each other in the form of grooves, and PLA (Poly Lactic Acid) is used as a material. In the first experiment, 10 examiners operated the tube 15° in the caudad direction and 15° in the anterior direction, and measured it with a protractor to conduct a reproducibility experiment. Second, two examiners acquired vertically incidence images using the existing law method and assistive devices, and measured the distance between each measurement point to evaluate the reproducibility. The tube center ray angle reproducibility experiment was not statistically significant, but the angle difference was up to 9° between examiners. The reproducibility experiment of radiographic images was not statistically significant with the conventional method, and the method using an assistive device was statistically significant. Therefore, regardless of skill level, an image capable of securing reproducibility, which is the advantage of vertical incidence, could be obtained.

Effect of the Permeability of Excavation Wall on the Earth Pressure in a Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.2
    • /
    • pp.13-21
    • /
    • 2018
  • The magnitude and distribution of earth pressure on the excavation wall in jointed rock mass were examined by considering different wall permeability conditions as well as rock types and joint inclination angles. The study was numerically extended based on a physical model test (Son & Park, 2014), considering rock-structure interactions with the discrete element method, which can consider various characteristics of rock joints. This study focused on the effect of the permeability condition of excavation wall on the earth pressure in jointed rock masses under a groundwater condition, which is important but has not been studied previously. The study results showed that the earth pressure was highly influenced by wall permeability as well as rock type and joint condition. Earth pressure resulted from the study was also compared with Peck's earth pressure in soil ground, and the comparison clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground.

AUTOMATIC LEVELING CONTROL SYSTEM FOR COMBINE

  • Lee, S. S.;K. S. Oh;H. Hwang;Park, D. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.684-689
    • /
    • 2000
  • In harvesting rice and barley using combine, the inclination of the body caused by the irregular surface condition of the field and the soil sinking from the unbalanced weight during the grain collection used to make harvesting operation difficult and even impossible. To overcome such a problem, automatic leveling control system for a combine has been developed and tested. The system was composed of the sensor for measuring left and right inclination of the combine chassis and the hydraulic control system. The adaptability of the control system was investigated by analyzing system response in time domain. And the limit angle of the leveling control was set up to be +/- 7$^{\circ}$. The proposed control and hydraulic power system was implemented to the prototype combine. The prototype combine was designed and built as a separable structure with chassis and track. This paper shows results of the leveling performance tested in the laboratory and the grain field.

  • PDF

Hub Parametric Investigation of Main Rotor Stability of Bearingless Helicopter (무베어링 헬리콥터 주 로터의 허브 파라미터 변화에 따른 로터 안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.784-790
    • /
    • 2012
  • This paper describes a stability and dynamic characteristics of bearingless helicopter main rotor in hover. Baseline rotor configuration is defined and modal analysis for the configuration is taken to verify the dynamic characteristics. The kinematic pitch-lag couplings through ways of pitch link installation are analyzed to know effects on loads, frequencies and stability. The effects of pitch link attachments in spanwise direction and chordwise direction as well as pitch link inclination on thrust, power, flpa-lag-pitch mode frequencies and inplane damping are examined. Pitch link at trailing edge location in chordwise direction has influence on aeroelastic stability of the rotor. Also, the pitch link with negative inclination angle makes inplane damping increase.

A Study on Natural Convection Flows Using Particle Image Analysis (입자영상해석에 의한 자연대류 유동에 관한 연구)

  • Bae, D.S.;Kim, N.S.;Cho, W.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.11-16
    • /
    • 2000
  • Simultaneous quantitative measurements are made of the velocity fields for two-dimensional natural convection in a rectangular enclosure using PIV(Particle Image Velocimetry). The experiments are performed at a Prandtl number of 6.62, an aspect ratio of 1.0, Rayleigh numbers from $1.294{\times}10^6\;to\;3.8841{\times}10^6$, and angles of inclination of $0^{\circ},\;30^{\circ}\;and\;60^{\circ}$ inside a $30mm{\times}30mm{\times}8mm$ cavity made of an acrylic glass 10mm, with two isothermal copper walls kept at a prescribed temperature. The experimental results agreed very well with the numerical results. It was found that the flow consisted of a large double convection cell at angle of inclination of $60^{\circ}$.

  • PDF

Natural Convection Heat Transfer from a Hot Body in an Inclined Square Enclosure (경사진 정사각형 밀폐공간 내에 있는 고온부로부터의 자연대류 열전달)

  • Kwon, Sun-Sok;Chung, Tae-Hyun
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 1992
  • Laminar natural convection heat transfer from a hot body in a square enclosure has been stooled for various inclination angles at $Gr=1.5{\times}10^5$, Pr= 0.71 and $k_s/k_f=14710$. The area of a hot body is 1/25 of the enclosure and the aspect ratio is 1.0. The total mean Nusselt number decreases as the inclination angle increases and in case of ${\theta}=90^{\circ}$ is 14% lower than that of ${\theta}=0^{\circ}$.

  • PDF

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.785-791
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed.

Experimental study on the cooling characteristics of thermosyphon for the high power electronic components (고발열 전자부품 냉각용 써모사이폰의 냉각특성에 관한 연구)

  • 김광수;김원태;송규섭;이기백
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.137-146
    • /
    • 1998
  • The experimental study is concerned with two-phase closed thermosyphons, (i.e., wickless heat pipes) for the cooling of high power electronic components in telecommunication system. The thermosyphon which can deal with a high heat flux of up to $4.9W/cm^2$ is developed, and the cooling characteristics of thermosyphon is analyzed according to design parameters which are the types of and quantity of working fluid, number of pipes, wire insertion in pipe, inclination angle of thermosyphon, and cooling air velocity. Using water as working fluid is superior cooling performance compared to using acetone, and cooling performance is improved as the number of thermosyphon becomes larger, inserting wires in the pipes, and inclination of $30~60^{\circ}$.

  • PDF

Development of Micro Cooling System for Telecommunication System using Oscillating Heat Pipe (진동 세관형 히트파이프를 이용한 통신 기기용 마이크로 냉각시스템의 개발)

  • Ha, Soo-Jung;Bae, Nae-Soo;Park, Chul-Min;Kim, Jung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1499-1505
    • /
    • 2003
  • Rapid development of electronic technology requires small size, high density packaging and high power of electronic devices. So, in this paper, characteristics on oscillating heat pipe according to operating conditions(environment temperature, charging ratio of working fluid, inclination) based on experimental study was investigated. From the experimental results, $25^{\circ}C$environment temperature), R-141b(working fluid)40%(charging ratio) was best performace at others of inclination angle and The top heating mode of OCHP performed 80% efficiency of the bottom heating mode.

  • PDF

Hub Parametric Investigation of Main Rotor Stability of Bearingless Helicopter (무베어링 헬리콥터 주 로터의 허브 파라미터 변화에 따른 로터 안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.394-399
    • /
    • 2012
  • This paper describes a stability and dynamic characteristics of bearingless helicopter main rotor in hover. Baseline rotor configuration is defined and modal analysis for the configuration is taken to verify the dynamic characteristics. The kinematic pitch-lag couplings through ways of pitch link installation are analyzed to know effects on loads, frequencies and stability. The effects of pitch link attachments in spanwise direction and chordwise direction as well as pitch link inclination on thrust, power, flpa-lag-pitch mode frequencies and inplane damping are examined. Pitch link at trailing edge location in chordwise direction has influence on aeroelastic stability of the rotor. Also, the pitch link with negative inclination angle makes inplane damping increase.

  • PDF