• Title/Summary/Keyword: Inclination Angle

Search Result 756, Processing Time 0.035 seconds

Tracking Method of Inclination-dependent 2-axis Solar Tracker (경사각 종속형 2축식 태양광 추적기의 추적방식)

  • Hong, Jung-Hoon;Kim, Eun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.180-187
    • /
    • 2013
  • The dinger in solar generation is the amount of sunlight which the solar cells absorb. Various types of solar trackers, which rotate themselves in order to make the solar cells face the sun as much as possible, have been developed, and especially the method of tracking with two axes has greatly contributed in increasing the generation amount at work sites. Among theses 2-axis solar trackers, the inclination-dependent 2-axis solar tracker are widely utilized for its advantages of requiring less initial investment and easy maintenance due to a solid structure. However, the drawback is that the generation efficiency is relatively low because of the structural restriction that limits the rotation angle, thus making it less efficient when tracking the sun. This paper proposes a method to increase the generation efficiency of the inclination-dependent 2-axis solar tracker. It also contains the derived equations needed for precise controlling along with a method to keep tracking with the other axis even when one has reached its angle limit. To confirm that the proposed method increases the amount of incidence onto the solar cells, formulas needed for operation on the proposed method and tracking the exact position of the sun are derived, and applying this to the quarterly data of Korea Astronomy and Space Science Institute it shows maximum over 11.1% more incidence compared to existing methods.

A Study on the Lighting Distribution Optimal Design of 250 W LED Streetlight (250 W급 LED가로등의 배광 최적설계에 관한 연구)

  • Shin, Wang-Soo;Lee, Seung-Min;Gwon, Young-Guk;Lee, Jin-Youle;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.408-413
    • /
    • 2015
  • Road lighting has emerged in importance as an essential system to secure safety and visibility for drivers and pedestrians. According to the Road Lighting Standards (KS A 3701), the luminance uniformity (U0) should be 0.4, the luminance uniformity for lanes (UI) should be 0.5, and a threshold increment (TI) of 10% should be satisfied. In this study, we conducted simulations using the Relux program in which the secondary optical lens was applied to a 21 W engine. Ten LED engines were installed on a two-way four-lane road, and the simulation result satisfied the requirements with U0 0.47, UI 0.63 and TI 8%. The U0, UI, and TI were compared with the angle of the LED streetlight varied in the range of $9^{\circ}{\sim}15^{\circ}$ with $0.5^{\circ}$ intervals. The range was selected as ${\pm}25%$ of the standard inclination angle of $12^{\circ}$ according to the Road Lighting Standard. The U0 was high and the UI and TI were low when the tilting angle was in the range of $9.5^{\circ}{\sim}10.5^{\circ}$. Consequently, an optimum-design of lighting distribution was obtained for the concrete two-way four-lane road when the inclination angle was $9^{\circ}$.

The Visual Changes of Colors by the Measuring Angle of Cotton/PET Union Fabrics (면(綿)/PET 교직물(交織物)의 측정각(測定角)에 따른 색변화 연구(色變化 硏究))

  • Lee, Mi-Kyung
    • Journal of Fashion Business
    • /
    • v.10 no.4
    • /
    • pp.151-162
    • /
    • 2006
  • This study investigated into the effects of the colors of warp and weft on the overall colors of fabrics, along with the visual changes of colors by the measuring angle of both warp and weft, by means of cross-dyeing of cotton/PET union fabrics. First, the reflectance of polyester is higher than that of cotton over the whole wavelength. Second, the dyeing of polyester uses the disperse dyes and that of cotton uses fiber-reactive dyes, the differences in the features of dyes and the reflectance of fabrics cause the same colors to be perceived different by the angle of observation. Third, the dyeing of cotton and PET fabrics individually with the same color revealed that the dyeing of cotton and PET fabrics in one bath resulted in a small difference in colors between the two fabrics than the separate dyeing in two bathes. In the case of one bath, the dyeing of PET fabrics followed by that of cotton fabrics resulted in a small difference in color than the dyeing in the reversed order. Fourth, when cotton/PET union fabrics were dyed in ten colors, the difference in colors between the two fabrics was small; and due to the difference in the density of warp and weft of union fabrics, some difference was detected in comparison with the results of separate dyeing of cotton and PET fabrics in one bath. The latter did not produce the changes in color which was recognizable with the naked eyes. Fifth, when cotton/PET union fabrics were dyed in ten colors, any color change was not observed by the measuring angle, and the inclination in the direction of warp or weft resulted in the tendency of color-deepening. In the measurement of the latter, the inclination in the direction of weft resulted in the higher color-deepening than that in the direction of warp, due to the influence of weft.

Determination of Femoral and Tibial Joint Reference Angles in Small-breed Dogs

  • Kim, Jooho;Heo, Suyoung;Na, Jiyoung;Kim, Namsoo;Kim, Minsu;Jeong, Seongmok;Lee, HaeBeom
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.340-345
    • /
    • 2016
  • The present study determined the normal reference ranges for the femoral and tibial joint orientation angles of small-breed dogs. For this purpose, 60 each of cadaveric canine femurs and tibias from normal small-breed dogs (Maltese, Poodle, Shih Tzu, Yorkshire Terrier) were examined with radiographs and photographs. Axial and frontal radiographs and photographs of each bone were obtained, from which anteversion and inclination angles, anatomic lateral proximal and distal femoral angles (aLPFA and aLDFA), mechanical lateral proximal and distal femoral angles (mLPFA and mLDFA), and mechanical medial proximal and distal tibial angles (mMPTA and mMDTA) were measured. The 95% CI for radiographic values of all femurs and tibiae were anteversion angle, $23.4-27.4^{\circ}$; inclination angle, $128.4-130.4^{\circ}$; aLPFA, $117.8-122.1^{\circ}$; aLDFA, $93.7-95.2^{\circ}$; mLPFA $113.8-117.3^{\circ}$; mLDFA $99.2-100.5^{\circ}$; mMPTA $96.8-98.5^{\circ}$; mMDTA $89.4-90.7^{\circ}$. The Maltese had a larger anteversion angle than the Poodle and the Yorkshire Terrier and a larger mLPFA than the Poodle. In the comparison between the radiographs and the photographs, significant differences were found in the anteversion angle, mLPFA, mMPTA, and mMDTA. The established normal reference values might be useful for determining whether a valgus or varus deformity of the femur or the tibia is present and if so, the degree of angular correction needed.

The Biomechanical Analysis of the Cuervo Salto Forward Straight Vaults with Twists (도마 몸 펴 쿠에르보 비틀기 동작 분석)

  • Lim, Kyu-Chan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.143-151
    • /
    • 2005
  • This study was conducted to investigate the technical factors of Cuervo forward straight vaults with single twist, single and half twists, and double twists actually performed by three execellent male gymnasts participated in artistic gymnastics competition of 2003 summer Universiade in Daegu and the 85th National Sports Festival in Cheongju. To accomplish the research goals the Cuervo vaults of three gymnasts were filmed by using three digital camcorders set by 60 Hz, and data were collected through the DLT method of three dimensional cinematography. The kinematic and kinetic variables as each phasic time, CM displacement velocity, release angle inclination angle hip joint angle landing angle, average horse reaction force average moment arm average torque, whoe body's total remote local angular momentum were analyzed, so the following conclusions were reached. Generally to perform the better Cuervo vault, a gymnast should touch down on the board with the great horizontal velocity of the whole body through the fast run-up, and touch down on the horse by decreasing the horizontal displacement of the whole body during the preflight, so raise CM height gradually within a short horse contact time. He should increase the horse reaction force through checking the horizontal velocity of the whole body effectively and the inclination angular displacement of the handstand, if so he can have the large vertical velocity of the whole body. By using the acquired the velocity and the angular momentum of the whole body, he can vault himself higher and twist sufficiently, then he can get better if the body could be tilted by swinging both arms and perform the cat twist with a little flexions at hip joints. According to the above outcomes we can judge that the best athletes is LuBin, the better is YTY, and the next is JSM.

The effect of well inclination angle on sand production using FDM-FEM modelling; A case study: One of the oil fields in Iran

  • Nemat Nemati;Kamran Goshtasbi;Kaveh Ahangari;Reza Shirinabadi
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.107-123
    • /
    • 2024
  • The drilling angle of the well is an important factor that can affect the sand production process and make its destructive effects more severe or weaker. This study investigated the effect of different well angles on sand production for the Asmari Formation, located in one of the oil fields southwest of Iran. For this purpose, a finite difference model was developed for three types of vertical (90°), inclined (45°), and horizontal (0°) wells with casing and perforations in the direction of minimum and maximum horizontal stresses, then coupled with fluid flow. Here, finite element meshing was used, because the geometry of the model is so complex and the implementation of finite difference meshes is impossible or very difficult for such models. Using a combined FDM-FEM model with fluid flow, the sand production process in three different modes with different flow rates for the Asmari sandstone was investigated in this study. The results of numerical models show that the intensity of sand production is directly related to the in-situ stress state of the oil field and well drilling angle. Since the stress regime in the studied oil field is normal, the highest amount of produced sand was in inclined wells (especially wells drilled in the direction of minimum horizontal stress) and the lowest amount of sand production was related to vertical wellbore. Also, the Initiation time of sand production in inclined wells was much shorter than in other wellbores.

A Study on the Power Performance Measurement of Transparent Thin-film PV Windows of BIPV Depending on the Inclined Angle (건물일체형 투명 PV복층창의 설치조건에 따른 단위출력당 발전특성 분석연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.55-60
    • /
    • 2008
  • This study is on the analysis of power output of transparent thin-film PV windows which are integrated into the building envelope instead of traditional windows. 3 installation angles of vertical, horizontal and $30^{\circ}C$ inclination are investigated. To measure power output of PV windows, full scale mock-up house was designed and constructed. The power performance of PV window system was analyzed for horizontal angle, declination angle and vertical angle according to incline angle. Monitoring data are gathered from November 2006 to August 2007 and statistical analysis is performed to analysis a characteristics of power performance of transparent PV windows. Results show that annual power output of PV window with horizontal angle is 844.4kWh/kWp/year, declination angle 1,060kWh/kWp/year and vertical angle 431.6 kWh/kWp/year.

  • PDF

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.