• Title/Summary/Keyword: Incinerator wastewater

Search Result 13, Processing Time 0.016 seconds

Life Cycle Assessment (LCA) Study of Wastewater Sludge Treatment Systems: Incineration, Composting, Solidification (하수슬러지 처리공정에 대한 전과정평가(LCA))

  • Han Ji Young;Cho Hee Chm;Kim Do Kyun
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.17-26
    • /
    • 2002
  • As it is not allowed to landfill sludge from 2001 by the act of waste management, new systems of treating sludge are necessary. Life Cycle Assessment, LCA, is a method for evaluating systems in the aspect of environment and also can apply to decision making tools for policy making. The objective of this study is to assess 3 alternatives of landfill: incineration, composting, solidification by applying LCA. This study is done with operation data from incinerator in Kuri, composting facility in Nanjido, solidification facility in Kimpo and electricity and transport data of Korea in 1998 are used. The results of the LCA is that the composting system is most environmental-friendly and the solidification system is least environmental-friendly.

Development of Source Profiles and Estimation of Source Contribution for VOCs by the Chemical Mass Balance Model in the Yeosu Petrochemical Industrial Complex (여수석유화학산단 내 VOCs에 대한 오염원 분류표의 개발 및 CMB 모델에 의한 기여도 산정)

  • Jeon Jun-Min;Hur Dong;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • The purposes of this study were to characterize the local levels of VOCs (volatile organic compounds), to develop source profiles of VOCs, and to quantify the source contribution of VOCs using the CMB (chemical mass balance) model. The concentration of VOCs had been measured every 6-day duration in the SRO monitoring site in the Yeosu Petrochemical Industrial Complex from September 2000 to August 2002. The total of 35 target VOCs, which were included in the TO-14 designated from the U.S. EPA, was selected to be monitored in the study area. During a 24-h period, the ambient VOCs were sampled by using canisters placing about 10 ~ 15 m above the ground level. The collected canisters were then analyzed by a GC-MS in the laboratory. Aside from ambient sampling at the SRO site, the VOCs had been intensively and massively measured from 8 direct sources and 4 general sources in the study area. The results obtained in the study were as follows; first, the annual mean concentrations of the target VOCs were widely distributed regardless of monitoring sites in the Yeosu Petrochemical Industrial Complex. In particular, the concentrations of BTX (Benzene, Toluene, Xylene), vinyl chloride were higher than other target compounds. Second, based on these source sample data, source profiles for VOCs were developed to apply a receptor model, the CMB model. Third, the results of source apportionment study for the VOCs in the SRO Site were as follows; The source of petrochemical plant was apportioned by 31.3% in terms of VOCs mass. The site was also affected by 16.7% from wastewater treatment plant, 14.0% from iron mills, 8.4% from refineries, 4.4% from oil storage, 3.8% from automobiles, 2.3% from fertilizer, 2.3% from painting, 2.2% from waste incinerator, 0.6% from graphic art, and 0.4% from gasoline vapor sources.

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.