• 제목/요약/키워드: Incineration plants

검색결과 45건 처리시간 0.036초

폐열회수시설이 설비된 생활폐기물 소각자원화시설 온실가스 배출량 산정 시 오차분석 (2009~2013) (Study on the Measurement of GHG Emissions and Error Analysis in Form the MSW Incineration Plant Equipment with the Recovery Heat System (2009~2013))

  • 최원근;서란숙;박승철
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.239-246
    • /
    • 2016
  • This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely $CO_2$ with a small amount of $CH_4$ and $N_2O$. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about $3,174,000tCO_2eq$. To look at it by year, the biggest amount was about $877,000tCO_2eq$ in 2013. To look at it by region, Gyeonggido showed the biggest amount (about $163,000tCO_2eq$ annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about $154kCO_2eq$ annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.

생활(生活)쓰레기 소각열(燒却熱) 이용실태(利用實態)에 관(關)한 연구(硏究) - 대구광역시(大邱廣域市)를 중심(中心)으로 - (A Study on Using Incineration Heat of Municipal Solid Wastes - Case Study of Taegu metropolitan city -)

  • 홍원화;이강국;이지희
    • KIEAE Journal
    • /
    • 제1권1호
    • /
    • pp.45-52
    • /
    • 2001
  • This study aims to make a fundamental data for a policy-making decision in treatment and disposal of municipal solid wastes and presents a research data on the discharge properties of municipal solid wastes and making a unit of them in the Taegu metropolitan city. The results can be summarized as follows; survey the discharge properties of municipal solid wastes, calorific values and to present a research-data in supplying incineration-heat of wastes with the area of Sung-seo in Taegu. So, using fundamental data for planning and running wastes-incineration plants as well as trying to make better Urban Environmental Infra-structure. The results are obtained from the study. 1) The proportion of combustible wastes in Taegu increased from 89.6% to 94.47% during 1993~2000. However, the proportion of incombustibles decreased from 10.4% to 5.53% during 1993~2000. 2) The value of representative properties is about 1500~2000kcal/kg. So we can expect that it should be made use of energy-resources positively. 3) The heat from Sung-seo wastes-incineration plants is used to produce electronic-energy for wastes-incineration plants in summer season. The heat from Sung-sea wastes-incineration plants is in charge of 27% which of supplying the area of Sung-seo with district heating energy in winter season.

  • PDF

회귀분석을 이용한 소각장의 소각열 회수 경제성 분석 연구 (Economic Assessment of the Heat Recovery from Incineration Plants Based on Regression Analysis)

  • 윤정민;손형민;박동윤;장성주
    • 자원리싸이클링
    • /
    • 제23권3호
    • /
    • pp.3-12
    • /
    • 2014
  • 본 연구에서는 대표적인 폐기물 최종 처리시설인 소각장을 대상으로 소각열 회수에 따른 경제성 분석을 수행하였다. 국내에서 운영 중인 소각장의 건설 및 운영비용, 소각열 회수량에 대한 함수식을 회귀분석을 통해 도출하였으며, 이를 바탕으로 생애주기비용을 비교함으로써 소각열 회수에 대한 경제성을 비교 분석하였다. 도출된 회귀식으로 일일 80톤 처리규모의 소각장을 기준으로 경제성 분석을 진행한 결과, 소각열 회수시 추가 설비 및 인건비로 인한 초기투자 비용 및 운영비용이 크지만, 열회수에 따른 LNG 대체효과로 계산시 11년 이상 운영할 경우 미회수 소각장과 비교하여 경제적 우위성이 있었다. 또한 열 판매와 온실가스 감축효과를 편익으로 계산할 경우 19년의 자본회수기간이 소요됨을 확인하였다.

Analysis of Chemical Compounds of Gaseous and Particulate Pollutants from the Open Burning of Agricultural HDPE Film Waste

  • Kim, Tae-Han;Choi, Boo-Hun;Kook, Joongjin
    • 인간식물환경학회지
    • /
    • 제24권6호
    • /
    • pp.585-593
    • /
    • 2021
  • Background and objective: Illegal open-air incineration, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention. Countries around the world have been undertaking studies on the emission of heavy metal substances in fine dust discharged during the incineration process. A precise analytical method is required to examine the harmful effects of particulate pollutants on the human body. Methods: In order to simulate open-air incineration, the infrastructure needed for incineration tests complying with the United States Environmental Protection Agency (EPA) Method 5G was built, and a large-area analysis was conducted on particulate pollutants through automated scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS). For the test specimen, high-density polyethylene (HDPE) waste collected by the DangJin Office located in Choongcheongnam-do was used. To increase the identifiability of the analyzed particles, the incineration experiment was conducted in an incinerator three times after dividing the film waste into 200 g specimens. Results: Among the metal particulate matters detected in the HDPE waste incineration test, transition metals included C (20.8-37.1 wt%) and O (33.7-37.9 wt%). As for other chemical matters, the analysis showed that metal particulate matters such as metalloids, alkali metals, alkaline earth metals, and transition metals reacted to C and C-O. Si, a representative metalloid, was detected at 14.8-20.8 wt%, showing the highest weight ratio except for C and O. Conclusion: In this study, the detection of metal chemicals in incinerated particulate matters was effectively confirmed through SEM-EDS. The results of this study verified that HDPE waste adsorbs metal chemicals originating from soil due to its own properties and deterioration, and that when incinerated, it emits particulate matters containing transition metals and other metals that contribute to the excessive production and reduction of reactive oxygen species.

화학공장 소각공정에 대한 안전기술기준 제안 (Proposal of the Safety Technical Standards for Incineration Process in the Chemical Plants)

  • 마병철;권혁면;김영철
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.64-69
    • /
    • 2012
  • The purpose of this study is to suggest new safety technical standards to improve the safety in the incineration process. Firstly, we analyzed the major accidents occurred in the incineration process since 1996 and proposed 4 articles which is required to be added newly to the existing KOSHA GUIDE. Secondly, we also performed the HAZOP study for each study node and also suggested 3 articles. Finally, we analyzed recommendations commented for PSM reports which have been submitted from the enterprise located in Honam province since 2005 and proposed 2 articles as well. We understand that all 9 articles proposed above, should be added to the KOSHA GUIDE in order to improve the safety in the incineration process and to prevent the major fire and explosion accidents in the design stage.

하수슬러지 소각장의 온실가스 배출계수 개발 (Development of Greenhouse Gas Emission Factors from Sewage Sludge Incinerator)

  • 김승진;강성민;강소영;이정우;사재환;박성진;전의찬
    • 한국기후변화학회지
    • /
    • 제5권3호
    • /
    • pp.209-218
    • /
    • 2014
  • In this study, the researchers have developed the greenhouse gas emission coefficients targeted at sewage sludge incineration plants that treat sewage sludge by incineration. Among the gases emitted from the sewage sludge incineration plants, the greenhouse gases showed concentrations of 6.84% for $CO_2$, 4.51 ppm for $CH_4$, and 86.34 ppm for $N_2O$; calculated into greenhouse gas emission coefficients, these gave $276.06kg\;CO_2/ton$, $0.0066kg\;CH_4/ton$, and $0.35kg\;N_2O/ton$. As the result of calculating the greenhouse gas emission quantity in sewage sludge incineration plants using the greenhouse gas emission coefficients, the gross greenhouse gas emission was $84.63ton\;CO_2\;eq./day$, and the net emission was $23.90ton\;CO_2\;eq./day$; this was $37.52ton\;CO_2\;eq./day$ less than the net greenhouse gas emission that was calculated using the standard values of IPCC, which was $61.42ton\;CO_2\;eq./day$. This difference is probably because unlike the standard values of IPCC, the greenhouse gas emission coefficients of this study reflected the special properties of subject facilities. Thus, it is thought that emission coefficient research on the facilities that deviated from the standard values of IPCC should continue to achieve the development of national greenhouse gas coefficient that reflects the special properties of Korea.

A Study on the Enhancement of Inventories for Precursors (NOx, SOx) Released from Open Burning of Agricultural Waste Vinyl Causing the Secondary Generation of Particulate Matters

  • Kim, Tae-Han;Choi, Boo-Hun
    • 인간식물환경학회지
    • /
    • 제24권2호
    • /
    • pp.195-207
    • /
    • 2021
  • Background and objective: While response measures to particulate matters in rural areas are limited due to poor inventory record keeping in the agricultural sector, it is necessary to control agricultural waste vinyl and the emission of precursors released from open burning and the secondary generation of particulate matters. Currently, the open burning emission calculation method uses the definition prescribed in CAPSS by the National Institute of Environmental Research. Methods: This study presented an open burning emission calculation formula for agricultural waste vinyl, which is included as agricultural waste. As for activity data, the open burning ratio of agricultural waste vinyl, and the annual incineration volume provided in the Status Survey by the Ministry of Agriculture, Food, and Rural Affairs were applied. The emission factor was generated through incineration tests on three agricultural plastic film samples collected by the Korea Environment Corporation. Results: Among precursors, SOx and NOx were selected and their emission features were monitored with incineration experiment infrastructure based on the EPA 5G method. The highest emission concentration by agricultural waste type was concentrated in the first and second quarters. As for emission factor of SO2, it was calculated at 98.25 g/kg for mulching-use LDPE, 52.31 g/kg for greenhouse-use LDPE, and 14.40 g/kg for HDPE. As for NOx, it was calculated at 18.21 g/kg for mulching-use LDPE, 16.49 g/kg for greenhouse-use LDPE, and 10.67 g/kg for HDPE. Conclusion: This test confirmed the incineration features of PE-based plastics, ascertained the SOx emission factor that had not been included in open burning in the past, and established that low NOx emission concentration is interfered by soil mixed with livestock excretions. The findings from this study are expected to contribute to improving the system for controlling air pollutants in rural environments.

자원순환형 소각열 이용시스템에 관한 평가 (Evaluation on Utilizing Systems of Incineration Heat as Resource cycling Type)

  • 정용현
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.503-510
    • /
    • 2003
  • How to plan the energy system is one of the keys f3r constructing the Environment -Friendly City. for this reason, a great number of surveys for utilizing unused energy have conducted by a planner. In regard to unused energy, the heat from incineration plants classify as a unused energy having high-exergy-energy. From this point of view, It is studied about the plant systems providing heat to district heating & cooling(D.H.C) and producing electric power. It is divided four system models as system I (10K [kgf/cm$^2$) vapor as outlet of boiler, supply far 10K vapor and return to 60$^{\circ}C$ as supply condition of district heating), system II (30 K vapor as outlet of boiler, supply for 5t vapor and return to 60f as supply condition of district heating), system 111 (30 K vapor as outlet of boiler, supply for 85$^{\circ}C$ hot water and return to 60$^{\circ}C$ as supply condition of district heating), system IV (30 K vapor as outlet of boiler, supply for 47$^{\circ}C$ hot water and return to 40t as supply condition of district heating). The results from the upper condition of four system, System II got a proper on economical benefits and system IV calculated as benefiting on energy saving effects, and suggest indifference curve as the total evaluation method of both economical benefits and energy saving.

소각 프린트의 증기발생 및 배기가스에 대한 파라메트릭 ARX 모델규명 (Identification of a Parametric ARX Model of a Steam Generation and Exhaust Gases for Refuse Incineration Plants)

  • 황이철
    • 제어로봇시스템학회논문지
    • /
    • 제8권7호
    • /
    • pp.556-562
    • /
    • 2002
  • This paper studies the identification of a combustion model, which is used to design a linear controller of a steam generation quantity and harmful exhaust gases of a Refuse Incineration Plant(RIP). Even though the RIP has strong nonlinearities and complexities, it is identified as a MIMO parametric ARX model from experimental input-output data sets. Unknown model parameters are decided from experimental input-output data sets, using system identification algorithm based on Instrumental Variables(IV) method. It is shown that the identified model well approximates the input-output combustion characteristics.

쓰레기 소각 플랜트의 모델규명 (Model Identification of Refuse Incineration Plants)

  • 황이철;김진환
    • 동력기계공학회지
    • /
    • 제3권2호
    • /
    • pp.34-41
    • /
    • 1999
  • This paper identifies a linear combustion model of Refuse Incineration Plant(RIP) which characterizes its combustion dynamics, where the proposed model has thirteen-inputs and one-output. The structure of the RIP model is given as an ARX model which obtained from the theoretical analysis. And then, some unknown model parameters are decided from experimental input-output data sets, using system identification algorithm based on Instrumental Variables(IV) method. In result, it is shown that the proposed model well approximates the input-output combustion characteristics riven by experimental data sets.

  • PDF