• Title/Summary/Keyword: Inchon dock ecosystem

Search Result 2, Processing Time 0.014 seconds

Characteristics of Physicochemical Factors of Inchon Dock Ecosystem, Korea (인천항 선거내 해양환경의 이화학적 특성)

  • 유종수;이인규;이진환
    • The Korean Journal of Ecology
    • /
    • v.20 no.1
    • /
    • pp.61-68
    • /
    • 1997
  • Due to its lack of wave action and tide ecosystem in Inchon dock lacks in marine characteristics. Structural condition in the dock is artificially similar to that of lake. The purposes of this study was to clarify the water quality, to provide the basic physicochemical data and tl resolve the causation of ?미 blooming. Samples were obtained monthly from four stations in Inchon dock during January to December, 1991. Water temperature ranged from $2.7^{\circ}C$ to $27.6^{\circ}C$ under the strong influence of air temperature. Salinity varied between 24.7%-30.4% thus being influenced by freshwater discharged from a spring. Dissolved oxygen was concentrated from 0.1-13.92 mg/l and suspended solids were 6.9-231.0 mg/l. The physicochemical factors were similar to those investigated 10 years ago. However, increased concentration of nitrogenous nutrients initiated ?미 blooming and its process was accelerated to reach eutrophication. Algal blooming was proceeded in March and August.

  • PDF

Fluctuation of Phytoplankton Biomass and Primary Productivity in Closed Marine Ecosystem, Inchon Dock (인천권 폐쇄 해양생태계 식물플랑크톤의 생물량과 일차생산력)

  • 유종수
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.323-332
    • /
    • 1992
  • Chlorophyll-a concentrations of phytoplankton and primary productivities in closed marine ecosystem, Inchon Dock, were measured and analyzed monthly from August, 1990 to December, 1991. Chlorophyll-a concentrations ranged from 1.61 to $28.67\;\mu\textrm{g}\;Chi-a/I$, where nanoplankton ($2-20\;\mu\textrm{m}$) fractions contributed in 19.0-82.3% and picoplankton ($0.2-2\;\mu\textrm{m}$) fractions in 4.5-51.4%. Primary productivities measured by $^{14}C$ method ranged from 49.4 to $4359.4\;mg\;C{\cdot}m^{-2}{\cdot}day^{-I}$, where nanoplankton ($20\;\mu\textrm{m}$) contributed in 18.8-94.6%. These results implied that very tiny cell-sized phytoplankton populations were important in point of chlorophyll-a concentration and primary productivity of phytoplankton community. In monthly variations of chlorophyll-a concentration by phytoplankton, the first peak occurred in March and the second in August. Nitrogen requirement by phytoplankton ranged from 0.7 to $60.7\;mg\;at-N{\cdot}m^{-2}{\cdot}day^{-I}$ and the turnover time of inorganic nitrogen showed maximum during winter and minimum in summer. Carbon assimilation number increased in summer and decreased in winter.winter.

  • PDF