• Title/Summary/Keyword: Incheon port

Search Result 400, Processing Time 0.022 seconds

Technical Implication of an Intermodal Transport System for Implementation between Korea and China - On a train ferry system for Incheon harbor - (한·중 복합수송 시스템 도입을 위한 기술적 시사점 - 인천항 중심의 열차페리 시스템에 대하여 -)

  • Ko, Jung-O;Seo, Dae-Won;Lee, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.683-689
    • /
    • 2012
  • The logistics industry is growing rapidly with China's economic development in recent years. Particularly, the intermodal freight system is becoming the main issue to reduce the logistic costs under the situation that the quantity of cargo transported between Korea and China is continuously increasing. Shift from road transportation to eco-friendly modes such as rail and coastwise shipping is also increasing. The present study suggests technical aspects related to the implementation of intermodal transport system centered on train ferries between two countries with already employed Chinese infrastructure into consideration. Technical assessment of intermodal train ferry system entails not only the vessels but supporting facilities and technologies as well. Port and rail facilities and operating skills for efficient modal shifting, and their standardization is indispensible to the realization of an intermodal train ferry system between the two countries.

Competition and Cooperation Dynamics between Gwangyang Port and Major Container Ports in Northeast Asia (광양항과 동북아 주요 컨테이너항만간 경협 추세분석)

  • Park, Byung-In
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.2
    • /
    • pp.85-101
    • /
    • 2015
  • This study formulates a development strategy for Gwangyang port through the analysis of its competition with other major Northeast Asian ports. A revised BCG matrix is applied to estimate the change in competition between the major ports in Northeast Asia and the Lotka-Volterra model is used for the competitor analysis. The growing competitive power and influence of Chinese ports, continued competitive advantage of Busan port, diminishing competitiveness of Gwangyang and Incheon ports, and disappearing competitive position of Japanese ports in Northeast Asia are all confirmed. In addition, according to the relationship between Gwangyang port and other major Northeast Asian ports from 2007 to 2014, Gwangyang port has changed to a predatory from a win/win relation with Busan port and has maintained its predatory relationship with Hong Kong port in terms of transshipment cargoes. Moreover, Gwangyang port has formed predatory relationships with Shanghai and Ningbo ports, a pure competitive relation with Tianjin port, and a win/win relation with Qingdao and Dalian ports. Overall, predatory relationships between Gwangyang port and other Northeast Asia ports increased from 2007 to 2014. The counterstrategies for Gwangyang port to address this situation include establishing cooperative relations and continuing the win/win relationships with cooperative ports.

The Netherlands Spatial Development for Port Area in City-Region Focusing on the Case of Kop van Zuid in Rotterdam

  • Lee, Hee Jae;Whang, Heejoon
    • Architectural research
    • /
    • v.22 no.4
    • /
    • pp.135-143
    • /
    • 2020
  • The Netherlands is a human-made country and an extremely well-designed European country as well. The general Dutch spatial planning for the city and environment takes place at a regional level. The local community determines the primary development conditions, and the prospect is included in a legally binding land-use plan. Especially, Rotterdam is a representative port city as the center of world trade and the gateway to western Europe. According to the history of war, the city reconstruction and the movement of the port area have led to a general change in Rotterdam and the regional redevelopment project on the southern port area of Mass river for the expansion of city functions and the balanced development. The research purpose is to understand the spatial development of the Netherlands city-region based on the analysis regarding the Kop van Zuid project, which is a representative implemented case in Rotterdam. The theoretical framework is the five dimensions and twelve indicators of territorial governance from the TANGO research project by the EU. The target case is assessed by planning and social aspect, respectively, and the results are discussed based on the theoretical framework. This research has the possibility to be utilized as advanced research by the European perspective for spatial development in other city-regions with the port area, such as Incheon and Busan in Korea.

A Study on Estimating Air Pullution in the Port of Incheon (인천항의 대기오염물질 배출량 산정 연구)

  • Lee, Jeong-Uk;Lee, Hyang-Suk
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.143-157
    • /
    • 2021
  • International organizations such as the World Health Organization, the Organization for Economic Development and Cooperation, and major developed countries recognize the seriousness of air pollution. International organizations such as the International Maritime Organization have also implemented various regulations to reduce air pollution from ships. In line with this international trend, the government has also enacted a special law on improving air quality in port areas, and is making efforts to reduce air pollution caused by ports. The purpose of the Special Act is to implement comprehensive policies to improve air quality in port areas. This study sought to identify the emissions of each source of air pollutants originating from the port and prepare basic data on setting the policy priorities. To this end, the analysis was conducted in six categories: ships, vehicles, loading and unloading equipment, railways, unloading/wild ash dust, road ash dust, and the methodology presented by the European Environment Agency(EEA) and the United States Environmental Protection Agency(EPA). The pollutants subject to analysis were analyzed for carbon monoxide(CO), nitrogen oxides (NOX), sulfur oxides(SOX), total airborne materials(TSP), particulate matter(PM10, PM2.5), and ammonia(NH3). The analysis showed a total of 7,122 tons of emissions. By substance, NOX accounted for the largest portion of 5,084 tons, followed by CO (984 tons), SOX (530 tons), and TSP (335 tons). By source of emissions, ships accounted for the largest portion with 4,107 tons, followed by vehicles with 2,622 tons, showing high emissions. This proved to be the main cause of port air pollution, with 57.6% and 36.8% of total emissions, respectively, suggesting the need for countermeasures against these sources.

A Study on the Improvement for Port Placement of Response Vessel (방제선 배치 항만의 개선 방안)

  • Jang, Duck-Jong;Kim, Dae-Jin;Kim, Woo-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.810-819
    • /
    • 2017
  • The purpose of this study is to evaluate port use and the distribution of risk factors in 15 major ports in Korea, delineating the risk of each port after classifying the ports into four risk groups based on estimated risks. The placement of response vessels is then analyzed accordingly. Based on the results, danger was estimated to be especially high in ports where large-scale petrochemical facilities are located, such as Yeosu Gwangyang ports (1.85), Ulsan port (1.33) and Daesan port (1.25). The ports showing the next highest degree of danger were Pusan (0.95) and Incheon (0.83), which have significant vessel traffic, followed by Mokpo (0.71) and Jeju (0.49), which expanded their port facilities recently and saw an increase in large vessel traffic. Next is Masan (0.44), for which many fishing permits in the vicinity. When the relative ratios of each port were graded based on the Yeosu Gwangyang Ports, which showed the highest risk values, and risk groups were classified into four levels, the highest risk groups were Yeosu Gwangyang, Ulsan, Daesan and Pusan, with Incheon, Mokpo, Jeju, and Masan following. Pyeongtaek Dangjin, Pohang, Gunsan, and Donghae Mukho were in the mid-range danger group, and the low risk groups were Samcheonpo, Okgye, and Changsungpo. Among these, all response vessel placement ports specified by current law were above the mid-range risk groups. However, we can see that ports newly included in mid-range risk group, such as Mokpo, Jeju, and Donghae Mukho, were excluded from the pollution response vessel placement system. Therefore, to prepare for marine pollution accidents these three ports should be designated as additional response vessel placement ports.

A Study on the Asia Container Ports Clustering Using Hierarchical Clustering(Single, Complete, Average, Centroid Linkages) Methods with Empirical Verification of Clustering Using the Silhouette Method and the Second Stage(Type II) Cross-Efficiency Matrix Clustering Model (계층적 군집분석(최단, 최장, 평균, 중앙연결)방법에 의한 아시아 컨테이너 항만의 클러스터링 측정 및 실루엣방법과 2단계(Type II) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.31-70
    • /
    • 2021
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Hierarchical clustering(single, complete, average, and centroid), Silhouette, and 2SCE[the Second Stage(Type II) cross-efficiency] matrix clustering models on Asian container ports over the period 2009-2018. The models have chosen number of cranes, depth, birth length, and total area as inputs and container TEU as output. The main empirical results are as follows. First, ranking order according to the efficiency increasing ratio during the 10 years analysis shows Silhouette(0.4052 up), Hierarchical clustering(0.3097 up), and 2SCE(0.1057 up). Second, according to empirical verification of the Silhouette and 2SCE models, 3 Korean ports should be clustered with ports like Busan Port[ Dubai, Hong Kong, and Tanjung Priok], and Incheon Port and Gwangyang Port are required to cluster with most ports. Third, in terms of the ASEAN, it would be good to cluster like Busan (Singapore), Incheon Port (Tanjung Priok, Tanjung Perak, Manila, Tanjung Pelpas, Leam Chanbang, and Bangkok), and Gwangyang Port(Tanjung Priok, Tanjung Perak, Port Kang, Tanjung Pelpas, Leam Chanbang, and Bangkok). Third, Wilcoxon's signed-ranks test of models shows that all P values are significant at an average level of 0.852. It means that the average efficiency figures and ranking orders of the models are matched each other. The policy implication is that port policy makers and port operation managers should select benchmarking ports by introducing the models used in this study into the clustering of ports, compare and analyze the port development and operation plans of their ports, and introduce and implement the parts which required benchmarking quickly.

Study on Detection Technique for Sea Fog by using CCTV Images and Convolutional Neural Network (CCTV 영상과 합성곱 신경망을 활용한 해무 탐지 기법 연구)

  • Kim, Na-Kyeong;Bak, Su-Ho;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Park, Mi-So;Kim, Bo-Ram;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1081-1088
    • /
    • 2020
  • In this paper, the method of detecting sea fog through CCTV image is proposed based on convolutional neural networks. The study data randomly extracted 1,0004 images, sea-fog and not sea-fog, from a total of 11 ports or beaches (Busan Port, Busan New Port, Pyeongtaek Port, Incheon Port, Gunsan Port, Daesan Port, Mokpo Port, Yeosu Gwangyang Port, Ulsan Port, Pohang Port, and Haeundae Beach) based on 1km of visibility. 80% of the total 1,0004 datasets were extracted and used for learning the convolutional neural network model. The model has 16 convolutional layers and 3 fully connected layers, and a convolutional neural network that performs Softmax classification in the last fully connected layer is used. Model accuracy evaluation was performed using the remaining 20%, and the accuracy evaluation result showed a classification accuracy of about 96%.