• Title/Summary/Keyword: Inbred line

Search Result 132, Processing Time 0.03 seconds

Field Evaluation of Mungbean Recombinant Inbred Lines against Mungbean Yellow Mosaic Disease Using New Disease Scale in Thailand

  • Akhtar, Khalid P.;Kitsanachandee, R.;Srinives, P.;Abbas, G.;Asghar, M.J.;Shah, T.M.;Atta, B.M.;Chatchawankanphanich, O.;Sarwar, G.;Ahmad, M.;Sarwar, N.
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.422-428
    • /
    • 2009
  • Studies were conducted to identify the sources of resistance in mungbean recombinant inbred lines (RILs) in Thailand against mungbean yellow mosaic disease (MYMD). 146 mungbean RILs in $F_8$ series were evaluated in a field including resistant parent NM-10-12-1 and susceptible parent KPS 2 during summer 2008 under high inoculum pressure. The RILs were subsequently scored for disease symptom severity ratings (DSSR) using a new scale. Observations regarding DSSR and % disease index (%DI) showed that the tested RILs responded differently to the disease. A large number of RILs (132) were found highly susceptible, 12 were susceptible, 3 were tolerant and one was resistant. Overall screening results showed that three RILs, viz. line no. 30, 100 and 101 had minimum DSSR and % disease index thus they are good source of resistance to MYMD in spite of high disease pressure and can therefore be used directly as varieties to manage the disease in Thailand.

Identification of quantitative trait loci for root development during seedling stage in rice

  • Han, Jae-Hyuk;Chin, Joong Hyoun;Yoo, Soo-Cheul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.103-103
    • /
    • 2017
  • Vigorous root growth at the seedling stage in dry direct-seeded conditions is considered as a critical trait because it is involved in seedling emergence, early vegetative vigour, nutrient uptake as well as drought tolerance. In this study, we performed QTL mapping using the recombinant inbred lines obtained from the cross between Tongil-type Dasan and temperate japonica TR22183 (DT-RILs) to identify QTL underlying early root development. TR22183, which was previously reported to have high nitrogen utility and cold tolerance, showed vigorous root growth at the seedling stage in semi-drought conditions. Root length, fresh weight and dry weight of TR22183 were significantly higher than in Dasan. By QTL analysis with genotyping-by-sequencing method, we identified two QTLs for root fresh weight (RFW) in chromosome 7 and root dry weight (RDW) in chromosome 8, explaining phenotypic variances of 13.5% and 10.6%, respectively. These QTLs would be used to develop rice varieties adapted to direct-seeded cultivating system.

  • PDF

Agronomic Characteristics of a Glutinous Maize, Huin Chal 1 (다수성(多收性) 찰옥수수 "흰찰1호")

  • Lee, Won Koo;Lee, Hee Bong;Choi, Jae Eul;Choi, Chang Yeol;Choe, Bong Ho;Park, Seung Ue
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.269-272
    • /
    • 1992
  • A new single glutinous maize hybrid "Huin Chal 1" was developed at the Genetics and Breeding Lab., Dept. of Agron., College of Agriculture, Chungnam National University. Parents for the hybrid were all derived from Korean indigenous maize lines which were collected in 1980s. One of the parental inbred lines was originated from Bosung, Chonnam province and other inbred line was from Jewon, Chungbuk province. Both inbreds were developed by ear-to-row selection method through selling and named as Bosung and Jewon, respectively. Performace tests for the hybrid which was produced between Bosung and Jewon have been conducted five times including one test at Crop Experiment Station, Rural Development Administration. From the previous performance tests, the hybrid was recognized as high yielding hybrid with good agronomic characteristics and we named the hybrid as Huin Chal 1., and hereby we report the agronomic characters of the newly developed hybrid.

  • PDF

Mapping of Quantitative Trait Loci for Salt Tolerance at the Seedling Stage in Rice

  • Lee, Seung Yeob;Ahn, Jeong Ho;Cha, Young Soon;Yun, Doh Won;Lee, Myung Chul;Ko, Jong Cheol;Lee, Kyu Seong;Eun, Moo Young
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2006
  • Salt tolerance was evaluated at the young seedling stage of rice (Oryza sativa L.) using recombinant inbred lines (MG RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). 22 of 164 MG RILs were classified as tolerant with visual scores of 3.5-5.0 in 0.7% NaCl. Interval mapping of QTLs related to salt tolerance was conducted on the basis of the visual scores at the young seedling stage. Two QTLs, qST1 and qST3, conferring salt tolerance, were detected on chromosome 1 and 3, respectively, and the total phenotypic variance explained by the two QTLs was 36.9% in the MG RIL population. qST1 was the major QTL explaining 27.8% of the total phenotypic variation. qST1 was flanked by Est12~RZ569A, and qST3 was flanked by RG179~RZ596. The detection of new QTLs associated with salt tolerance will provide important information for the functional analysis of rice salt tolerance.

Proteomic Characterization of the 'Agakong', a Small-seeded Recombinant Inbred Line Derived from 'Eunhakong' (Glycine max) $\times$ 'KLG10084' (Glycine soja)

  • Choi, Ung-Kyu;Ryu, Hyun-Su;Kim, Hyun-Tae;Yun, Sun-Mi;Lee, Su-Jin;Choi, Jae-Dek;Hwang, Young-Hyun;Choi, Soo-Young;Kwon, Oh-Shin
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.912-918
    • /
    • 2008
  • This study was conducted to identify the differences in proteomic characteristics of 'Agakong', recombinant inbred line, and its parental genotypes 'Eunhakong' (Glycine max) and 'KLG10084' (G. soja). The isoflavone content of 'Agakong' was 3 times higher than that of its parental lines. A combined high-throughput proteomic approach was employed to determine the expression profile and identity of proteins using 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The overall distribution patterns of proteins are quite similar, but lots of protein spot intensities varied among the genotypes. A total of 41 proteins, representing significant difference in the quantities of protein among the lines, were successfully identified. Among them, more than 50% of the proteins identified were subunits of glycinin and $\beta$-conglycinin, 2 major storage proteins. This study showed that the proteomic analysis could help to define specific changes in protein level and composition, which can occur in the generation of new soybean varieties.

Establishment of Genetic Transformation System and Introduction of MADS Box Gene in Hot Pepper (Capsicum annuum L.)

  • Lim, Hak-Tae;Zhao, Mei-Ai;Lian, Yu-Ji;Lee, Ji-Young;Eung-Jun park;Chun, Ik-Jo;Yu, Jae-Woong;Kim, Byung-Dong
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • In vitro plant regeneration of inbred breeding line of hot pepper (Capsicum annuum L.) was established using leaf and petiole segments as explants. About 28 days old plants were excised and cultured on MS medium supplemented with TDZ and NAA or in combination with Zeatin. In all of the media compositions tested, combination of TDZ 0.5 mg/L, Zeatin 0.5 mg/L, and NAA 0.1 mg/L was found to be the best medium for shoot bud initiation. Young petiole was the most appropriate explant type for the plant regeneration as well as genetic transformation in hot pepper. In this study, HpMADS1 gene isolated from hot pepper was introduced using Agrobacterium-mediated transformation system. Based on the analysis of Southern blot and RT-PCR, HpMADS1 gene was integrated in the hot pepper genome. It has been known that floral organ development is controlled by a group of regulatory factors containing the MADS domain. Morphological characteristics in these transgenic plants, especially flowering habit, however, were not significantly altered, indicating this MADS gene, HpMADS1 may be non-functional in this case.

  • PDF

Evaluation of Inbreeding and Genetic Variability of Five Pig Breeds in Czech Republic

  • Krupa, Emil;Zakova, E.;Krupova, Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.25-36
    • /
    • 2015
  • The complex analysis of the pedigree records of Czech Landrace (CLA), Czech Large White-dam line (CLWd), Czech Large White-sire line (CLWs), Duroc (DC), and Pietrain (PN) was performed to determine trends of genetic diversity (GD), and to find the main sources of the GD loss. The total size of the pedigree was 132,365, 391,151, 32,913, 13,299, and 7,160 animals in CLA, CLWd, CLWs, DC, and PN, respectively. Animals born in the years 2011 through 2013 were assumed as the reference population. The average pedigree completeness index for one generation back was 95.9%, 97.4%, 91.2%, 89.8%, and 94.2% for appropriate breeds. Number of ancestors explaining 100% of gene pool was 186, 373, 125, 157, and 37 in CLA, CLWd, CLWs, DC, and PN, respectively. The relative proportion of inbred animals (58%, 58%, 54%, 47%, and 25%), the average inbreeding (2.7%, 1.4%, 2.5%, 3.6%, and 1.3%) and the average co-ancestry (3.1%, 1.6%, 3.3%, 4.2%, and 3.3%) were found over the past decade in analysed breeds. The expected inbreeding under random mating increased during the last 10 years in CLWs and PN and varied from 1.27% to 3.2%. The effective population size computed on the basis of inbreeding was 76, 74, 50, 35, and 83 in 2012 in CLA, CLWd, CLWs, DC, and PN, respectively. The shortest generation interval (1.45) was observed for CLWd in sire to son selection pathway. The longest generation interval obtained PN (1.95) in sire to daughter pathway. The average relative GD loss within last generation interval was 7.05%, 4.70%, 9.81%, 7.47%, and 10.46%, respectively. The relative proportion of GD loss due to genetic drift on total GD loss was 85.04%, 84.51%, 89.46%, 86.19%, and 83.68% in CLA, CLWd, CLWs, DC, and PN, respectively. All breeds were characterized by a high proportion of inbred animals, but the average inbreeding was low. The most vulnerable breeds to loss of GD are DC and PN. Therefore, a breeding program should be more oriented to prevent the increase of GD loss in these breeds.

Development of transgenic disease-resistance root stock for growth of watermelon.(oral)

  • S.M. Cho;Kim, J.Y.;J.E. Jung;S.J. Mun;S.J. Jung;Kim, K.S.;Kim, Y.C.;B.H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.65.2-65
    • /
    • 2003
  • To protect the plant against several soil-borne pathogens, we are currently constructing disease-resistant transgenic root stock for the growth of cucurbitaceae vegetable plants, watermelon and gourd. We made a watermelon cDNA library from Cladosporium cucumerinum-Infected leaves for substractive hybriazation and differential screening. We isolated the several pathogen inducible cDNA clones, such as caffeoyl-CoA-methyltransferase, LAA induced protein, receptor-like kinase homolog, hydroxyproline-rich glycoprotein, catalase, calmodulin binding protein, mitochondrial ATPase beta subunit, methyl tRNA synthetase and WRKY transcription factors. We previously obtained CaMADS in pepper and galactinol synthase ( CsGolS) in cucumber that were confirmed to be related with disease-resistance. CaMADS and CsGolS2 were transformed into the inbred line 'GO701-2' gourd, the inbred line '6-2-2' watermelon and the Kong-dye watermelon by Agrobacterium tumerfaciens LBA4404. Plant growth regulators (zeatin, BAP and IAA) were used for shoot regeneration and root induction for optimal condition. Putative transgenic plants were selected in medium containing 100mg/L kanamycin and integration of the CaMADS and CsGO/S2 into the genomic DNA were demonstrated by the PCR analysis. We isolated major soil-borne pathogens, such as Monosporascus cannonballus, Didymella bryoniae, Cladosporium cuvumerinum from the cultivation area of watermelon or root stock, and successfully established artificial inoculation method for each pathogen. This work was supported by a grant from BioGreen 21 program, Rural Development Administration, Republic of Korea.

  • PDF

Crossbreeding and parental lineage influences the diversity and community structure of rice seed endophytes

  • Walitang, Denver I.;Halim, MD Abdul;Kang, Yeongyeong;Kim, Yongheon;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.161-161
    • /
    • 2017
  • Seed endophytes are very remarkable groups of bacteria for their unique abilities of being vertically transmitted and conserved. As plants attain hybrid vigor and heterosis in the process of crossbreeding, this might also lead to the changes in the community structure and diversity of plant endophytes in the hybrid plants ultimately affecting the endophytes of the seeds. It would be interesting to characterize how seed endophyte composition change over time. The objective of this study is to gain insights into the influence of natural crossbreeding and parental lineage in the seed bacterial endophytic communities of two pure inbred lines exploring contributions of the two most important sources of plant endophytes - colonization from external sources and vertical transmission via seeds. Total genomic DNA was isolated from rice seeds and bacterial DNA was selectively amplified by PCR. The diversity of endophytic bacteria was studied through Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Diversity between the original parents and the pure inbred line may show significant differences in terms of richness, evenness and diversity indices. Heat maps reveal astonishing contributions of both or either parents (IR29 ${\times}$ Pokkali and AT401 ${\times}$ IR31868) in the shaping of the bacterial seed endophytes of the hybrid, FL478 and IC32, respectively. Most of the T-RFs of the subsequent pure inbred line could be traced to any or both of the parents. Comparison of common and genotype-specific T-RFs of parents and their offspring reveals that majority of the T-RFs are shared suggesting higher transmission of bacterial communities common to both parents. The parents influence the bacterial community of their offspring. Unique T-RFs of the offspring also suggest external sources of colonization particularly as the seeds are cultivated in different ecogeographical locations. This study showed that host parental lines contributed greatly in the shaping of bacterial seed endophytes of their offspring. It also revealed transmission and potential conservation of core seed bacterial endophytes that generally become the dominant microbiota in the succeeding generations of plant hosts.

  • PDF

Expression of CP4 5-Enol-Pyruvylshikimate-3- Phosphate Synthase Transgene in Inbred Line of Korean Domestic Maize (Zea may L.) (국내 옥수수 순계주에서 CP4 5-Enol- Pyruvylshikimate-3- Phosphate Synthase 유전자의 발현)

  • Cho, Mi-Ae;Kwon, Suk-Yoon;Kim, Jin-Seog;Lee, Byoung-Kyu;Moon, Choo-Yeun;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.375-380
    • /
    • 2007
  • This study was conducted to develop herbicide-resistance domestic maize plants by introducing the CP4 5-enol-pyruvylshikimate-3-phosphate synthase (CP4 EPSPS) gene using Agrobacterium tumefaciens-mediated immature embryo transformation. Immature embryos of five genotypes (HW1, KL103, HW3, HW4, HW7) were co-cultivated with strains Agrobacterium tumefaciens (strain C58C1) containing the binary vector (pCAMBIA2300) carrying Ubiquitin promoter-CP4 EPSPS gene and Cauliflower mosaic virus 35S (CaMV35S) promoter-nptll gene conferring resistance to paromomycin as a selective agent. The presence and expression of CP4 EPSPS transgene were confirmed by PCR, RT-PCR and Northern blot analysis, respectively. Also, the resistance to glyphosate in the transgenic maize ($T_1$) was analyzed by shikimate accumulation assay. The frequency (%) of paromomycin-resistance callus was 0.37, 0.03, 2.20, 2.37, and 0.81% in pure lines HW1, KL103, HW3, HW4 and HW7, respectively. EPSP transgene sequences were amplified in putative transgenic plants that regenerated from paromomycin-resistance calli of two inbred lines (HW3, HW4). Of them, RT-PCR and Northern blot analyses revealed that the transgene was only expressed in two transgenic events (M266, M104) of HW4 inbred line, and a mild glyphosate resistance of transgenic event (M266) was confirmed by the lower shikimate accumulation in leaf segments. These results demonstrate that transgenic maize with herbicide-resistance traits in Korean genotype can be genetically obtained.