• Title/Summary/Keyword: Inactivating Mutation

Search Result 12, Processing Time 0.016 seconds

Functional Defect of the Fas Mutants Detected in Gastric Cancers (위암에서 발견된 돌연변이형 Fas 단백의 기능적 결함)

  • Park Won Sang;Cho Young Gu;Kim Chang Jae;Park Cho Hyun;Kim Young Sil;Kim Su Young;Nam Suk Woo;Lee Sug Hyung;Yoo Nam Jin;Lee Jung Young
    • Journal of Gastric Cancer
    • /
    • v.3 no.4
    • /
    • pp.186-190
    • /
    • 2003
  • Purpose: The balance between cell proliferation and apoptosis is crucial for homeostatic maintenance in a cell population. Decreased apoptosis or uncontrolled proliferation can lead to cancer. The Fas receptor signal through a cytoplasmic death domain is very important in the apoptotic pathway. To identify the effect of the death domain of the Fas gene in the development and/or progression of gastric cancer, we examined the apoptotic potential of five known Fas mutants detected in gastric cancers. Materials and Methods: A wild-type Fas gene was cloned with cDNA from normal liver tissue and full length Fas was sequenced. Mutants of the gene were generated with sitedirected mutagenesis by using the wild-type gene and specific primers. Wild- and mutant-type genes were transfected to HEK293 cells. Forty-eight hours after transfection the cells were stained with DAPI and cell death was counted under fluorescent microscopy. Results: In wild-type Fas-transfected cells, the percentage of apoptotic cells was $85.9\pm3.6\%$, and significant cell death and classic morphologic signs of apoptosis were observed. However, the percentages of apoptotic cells transfected with N239D, E240G, D244V, and R263H of tumor-derived mutant Fas were $29.5\pm2.08\%,\;28.5\pm3.34\%,\;25.225\pm2.06\%,\;and\;36.625\pm4.49\%$, respectively. Conclusion: These results suggest that inactivation of Fas caused by mutations in the death domain of the Fas gene may be one of the possible escape mechanisms against Fas-mediated apoptosis and that inactivating mutation of the Fas may contribute to the development or progression of gastric cancers.

  • PDF

The Expression of Matrix Metalloprotease 20 is Stimulated by Wild Type but not by 4 bp- or 2 bp-Deletion Mutant DLX3

  • Park, Hyun-Jung;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Mutations in DLX3 are associated with both autosomal dominant hypoplastic hypomaturation amelogenesis imperfecta (ADHHAI) and tricho-dento-osseous (TDO) syndrome. ADHHAI is caused by a c.561_562delCT (2bp-del DLX3) mutation whereas TDO syndrome is associated with a c.571_574delGGGG (4bp-del DLX3) mutation. However, although the causal relationships between DLX3 and an enamel phenotype have been established, the pathophysiological role of DLX3 mutations in enamel development has not yet been clarified. In our current study, we prepared expression vectors for wild type and deletion mutant DLX3 products (4bp-del DLX3, 2bp-del DLX3) and examined the effects of their overexpression on the expression of the enamel matrix proteins and proteases. Wild type DLX3 enhanced the expression of matrix metalloprotease 20 (MMP20) mRNA and protein in murine ameloblast-like cells. However, neither a 4bp-del nor 2bp-del DLX3 increased MMP20 expression. Wild type DLX3, but not the above DLX3 mutants, also increased the activity of reporters containing 1.5 kb or 0.5 kb of the MMP20 promoter. An examination of protein stability showed that the half-life of wild type DLX3 protein was less than 12 h whilst that of both deletion mutants was longer than 24 h. Endogenous Dlx3 was also found to be continuously expressed during ameloblast differentiation. Since inactivating mutations in the gene encoding MMP20 are associated with amelogenesis imperfecta, the inability of 4bp-del or 2bp-del DLX3 to induce MMP20 expression suggests a possible involvement of such mutations in the enamel phenotype associated with TDO syndrome or ADHHAI.