• 제목/요약/키워드: Inaccurate reactive power sharing

검색결과 8건 처리시간 0.036초

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

An Islanding Microgrid Power Sharing Approach Using Adaptive Virtual Impedance control scheme

  • Hoang, Van-Tuan;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.315-316
    • /
    • 2016
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approachin order to address the inaccurate reactive power sharing problems. The proposed method can adaptively regulate the DG unit thanks to the equivalent impedance, andthe effect of the mismatch in feeder impedance is compensatedto share the reactive power accurately.The proposed control strategy can be implemented directly without any requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

Distributed Adaptive Virtual Impedance Control to Eliminate Reactive Power Sharing Errors in Single-Phase Islanded Microgrids

  • Hoang, Tuan V.;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.120-121
    • /
    • 2017
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approach in order to address the inaccurate reactive power sharing problem. The proposed method can adaptively regulate the DG virtual impedance, and the effect of the mismatch in feeder impedances is compensated to share the reactive power accurately. The proposed control strategy is fully distributed and the need for the microgrid central controller is eliminated. Furthermore, the proposed method can be directly implemented without requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

Improved Reactive Power Sharing for Parallel-operated Inverters in Islanded Microgrids

  • Issa, Walid;Sharkh, Suleiman;Mallick, Tapas;Abusara, Mohammad
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1152-1162
    • /
    • 2016
  • The unequal impedances of the interconnecting cables between paralleled inverters in the island mode of microgrids cause inaccurate reactive power sharing when the traditional droop control is used. Many studies in the literature adopt low speed communications between the inverters and the central control unit to overcome this problem. However, the losses of this communication link can be very detrimental to the performance of the controller. This paper proposes an improved reactive power-sharing control method. It employs infrequent measurements of the voltage at the point of common coupling (PCC) to estimate the output impedance between the inverters and the PCC and then readjust the voltage droop controller gains accordingly. The controller then reverts to being a traditional droop controller using the newly calculated gains. This increases the immunity of the controller against any losses in the communication links between the central control unit and the inverters. The capability of the proposed control method has been demonstrated by simulation and experimental results using a laboratory scale microgrid.

마이크로그리드 독립 운전 모드시 저전압 불평형 선로 임피던스를 고려한 드룹 방식의 인버터 병렬 운전 제어 연구 (Droop Control for Parallel Inverers in Islanded Microgrid Considering Unbalanced Low-Voltage Line Impedances)

  • 임경배;최재호
    • 전력전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.387-396
    • /
    • 2013
  • This paper investigates the droop control of parallel inverters for an islanded mode of microgrid. Frequency and voltage droop control is one of power control and load demand sharing methods. However, although the active power is properly shared, the reactive power sharing is inaccurate with conventional method due to the unequal line impedances and the power coupling of active - reactive power. In order to solve this problem, an improved droop method with virtual inductor concept and a voltage and current controller properly designed have been considered and analyzed through the PSiM simulation. The performance of improved droop method is analyzed in not only low-voltage line but also medium voltage line.

An Enhanced Instantaneous Circulating Current Control for Reactive Power and Harmonic Load Sharing in Islanded Microgrids

  • Lorzadeh, Iman;Abyaneh, Hossein Askarian;Savaghebi, Mehdi;Lorzadeh, Omid;Bakhshai, Alireza;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1658-1671
    • /
    • 2017
  • To address the inaccurate load demand sharing problems among parallel inverter-interfaced voltage-controlled distributed generation (DG) units in islanded microgrids (MGs) with different DG power ratings and mismatched feeder impedances, an enhanced voltage control scheme based on the active compensation of circulating voltage drops is proposed in this paper. Using the proposed strategy, reactive power and harmonic currents are shared accurately and proportionally without knowledge of the feeder impedances. Since the proposed local controller consists of two well-separated fundamental and harmonic voltage control branches, the reactive power and harmonic currents can be independently shared without having a remarkable effect on the amplitude or quality of the DGs voltage, even if nonlinear (harmonic) loads are directly connected at the output terminals of the units. In addition, accurate load sharing can also be attained when the plug-and-play performance of DGs and various loading conditions are applied to MGs. The effects of communication failures and latency on the performance of the proposed strategy are also explored. The design process of the proposed control system is presented in detail and comprehensive simulation studies on a three-phase MG are provided to validate the effectiveness of the proposed control method.

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

Power Decoupling Control Method of Grid-Forming Converter: Review

  • Hyeong-Seok Lee;Yeong-Jun Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.221-229
    • /
    • 2023
  • 최근 전력 계통에 인공 관성, 감쇠, 블랙스타트 기능, 독립 운전 기능 등을 제공할 수 있어 많은 주목을 받고 있는 Grid-forming(GFM) 컨버터는 저전압 Microgrids(MG)에서 낮은 라인 임피던스의 X/R 비율과 작지 않은 전력각으로 인한 유효전력과 무효전력 간의 커플링 현상이 발생한다. 이러한 전력 커플링 현상은 GFM 컨버터의 안정성 및 성능 저하 문제, 부정확한 전력 공유 문제, 제어 파라미터 설계 문제를 유발하고 있다. 따라서 본 논문은 GFM 컨버터와 관련된 제어 방법뿐만 아니라 전력 디커플링 방법에 대한 검토 연구로서, 유망 제어 방법을 소개하고 전력 디커플링 방법에 대한 비판적 검토를 통하여 향후 연구 활동의 접근성을 높이고자 하였다. 이에 따라 전력디커플링 방법 연구를 위해 향후 연구자들이 쉽게 접근할 수 있어 분산 발전원 확대에 기여할 수 있을 것이다.