• Title/Summary/Keyword: InSAR 기술

Search Result 208, Processing Time 0.022 seconds

A Prototype Implementation of Component Modules for Web-based SAR Data Processing System (웹 기반 SAR 자료처리 시스템 구성모듈 시험구현)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.29-38
    • /
    • 2012
  • Nowadays, most remote sensing image processing systems are on client-based ones. But in the view of information technology, a web-based system is predominant, being closely related to cloud computing and services. The web-based system in remote sensing is somewhat limited in the area of data sharing or dissemination, but it is necessary to extend. This study is to implement a web-based system and its component modules for SAR data processing. First, the previous cases dealt with both web computing and SAR information are investigated. InSAR information processing and concerned modules for a web-based system among SAR research domains are the main points in this work. It is expected that this approach contributes to the first attempt to link web computing technology such as HTML5 and satellite image processing.

A Study on the Utilization of SAR Microsatellite Constellation for Ship Detection (선박탐지를 위한 초소형 SAR 군집위성 활용방안 연구)

  • Kim, Yunjee;Kang, Ki-mook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.627-636
    • /
    • 2021
  • Although many studies on ship detection using synthetic aperture radar (SAR) satellite images are being conducted around the world, there are still very few employing SAR microsatellites, as most of the microsatellites are optical satellites. Recently, the ICEYE and Capella Space have embarked on the development of microsatellites with SAR sensor, and similar projects are being initiated globally in line with the flow of the new space era [e.g., for the ICEYE: 18 satellites (~2021); Capella Space: 36 satellites (~2023); and the Coast Guard SAR: 32 satellites in the early development stage]. In preparation for these new systems, it is important to review the SAR microsatellite system and the recent advances in this technology. Accordingly, in this paper, the current status and characteristics of optical and SAR microsatellite constellation operation are described, and studies using them are investigated. In addition, based on the status and characteristics of the representative SAR microsatellites, specifically the ICEYE and Capella systems, methods for using SAR microsatellite data for ship detection applications are described. Our results confirm that the SAR microsatellites operate as a constellation and have the advantages of short revisit cycles and quick provision of high-resolution images. With this technology, we expect SAR microsatellites to contribute greatly to the monitoring a wide-area target vessel, in which the spatiotemporal resolution of the imagery is especially important.

Radar 영상을 이용한 지형복원방법과 변위관측에 관한 연구

  • ;;Hongxing Liu
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2000.10a
    • /
    • pp.1-15
    • /
    • 2000
  • Radar 영상은 능동적탐측기로서 밤과 낮의 구분없이 사용할 수 있고 또한 구름의 영향을 받지 않음으로 해서 여러 분야에서 사용되어왔다. 특히 SAR영상을 이용한 위상간섭법 (InSAR: Interferometric SAR)은 1990년대 초 미국의 JPL (Jet Propulsion Laboratory)에서 사용하기 시작하여 현재 원격탐측, 지구과학, 지구물리학, 측량학, 토목, 환경분야등에 다양하게 활용되고 있는 SAR영상을 이용한 최신의 원격탐측 기술이라 하겠다. 본 논문에서는 InSAR 방법을 중심으로 SAR 영상을 이용한 지형복원 방법과 변위관측 방법에 대해서 알아본다.

  • PDF

Performance Analysis of Deep Learning-Based Detection/Classification for SAR Ground Targets with the Synthetic Dataset (합성 데이터를 이용한 SAR 지상표적의 딥러닝 탐지/분류 성능분석)

  • Ji-Hoon Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Based on the recently developed deep learning technology, many studies have been conducted on deep learning networks that simultaneously detect and classify targets of interest in synthetic aperture radar(SAR) images. Although numerous research results have been derived mainly with the open SAR ship datasets, there is a lack of work carried out on the deep learning network aimed at detecting and classifying SAR ground targets and trained with the synthetic dataset generated from electromagnetic scattering simulations. In this respect, this paper presents the deep learning network trained with the synthetic dataset and applies it to detecting and classifying real SAR ground targets. With experiment results, this paper also analyzes the network performance according to the composition ratio between the real measured data and the synthetic data involved in network training. Finally, the summary and limitations are discussed to give information on the future research direction.

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

A Study on the D-InSAR Method for Micro-deformation Monitoring in Railway Facilities (철도시설물 미소변형 모니터링을 위한 D-InSAR 기법 연구)

  • Kim, Byung-Kyu;Lee, Changgil;Kim, Winter;Yoo, Mintaek;Lee, Ilhwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.43-54
    • /
    • 2022
  • The settlement at the railroad foundation is often the leading cause of track irregularity and potential derailment. The control of such deformation is considered necessary in track maintenance practice. Nevertheless, the monitoring process performed by in situ surveying requires an excessive amount of manpower and cost. The InSAR, a remote sensing technique by RADAR satellite, is used to overcome such a burden. The PS-InSAR technique is preferred for a long-term precise monitoring method. However, this study aims to obtain relatively brief analysis results from only two satellite images using the D-InSAR technique, while a minimum of 25 images are required for PS-InSAR. This study verifies the precision of D-InSAR within a few millimeters by inspecting railroad facilities and land settlements in Korea Railroad Research Institute's test track with images from TerraSAR-X Satellite. Multiple corner reflectors were adopted and installed on an embankment and the building roof to raise the surface reflectivity. Those reflectors were slightly adjusted periodically to verify the detecting performance. The results revealed the optimum distance between corner reflectors. Further, the deformation of railway tracks, slopes, and concrete structures was analyzed successively. In conclusion, this study indicates that the D-InSAR technique effectively monitors the short-term deformation of a broad area such as railway structures.

Study on the Requirement, Consideration, and Critical Baseline in SAR Design Process for the IFSAR Technique (IFSAR 기법 활용을 위해 SAR 설계시 요구조건, 고려사항 및 최대 베이스라인 연구)

  • 홍인표;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1858-1863
    • /
    • 2001
  • SAR data consist of magnitude and phase, and IFSAR technique using phase data is very useful high technology Producing fee height information. To use IFSAR technique effectively in the operation of SAR, this paper suggests the essential requirement and main consideration during SAR design process. Also the critical baseline, one of the principal elements, is derived, and it proposes applicable method through the simulation and discussion to the E-SAR.

  • PDF

Landcover classification by coherence analysis from multi-temporal SAR images (다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류)

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.132-137
    • /
    • 2009
  • This study has regard to classification by using multi-temporal SAR data. Multi-temporal JERS-1 SAR images are used for extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo, satellite images, and field survey. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass.

  • PDF

A Development of DDS Based Chirp Signal Generator and X-Band Transmitter-Receiver for Small SAR Sensor (DDS 기반의 소형 SAR 시스템 송수신장비 개발)

  • Song, Kyoung-Min;Lee, Ki-Woong;Lee, Chang-Hyun;Lee, Woo-Kyung;Lee, Myeong-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.326-329
    • /
    • 2016
  • UAVs(Unmanned Aerial Vehicle) can be used in variant fields fornot only combat, but also recon, observation and exploration. Moreover, UAVs capacity can be expanded to impossible missions for existing surveillance system such as SAR(Synthetic Aperture Radar) technology that collecting images from all weather conditions. In recent days, with development of highly efficient IC and lightened system technology, there are significant increase of researches and demands to make SAR sensor as a payload of UAV. Therefore, this paper contains development process and results of small signal generator and RF device as a core module of SAR system based on the digital device of DDS.

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.