• Title/Summary/Keyword: InSAR 기술

Search Result 210, Processing Time 0.026 seconds

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

A Study on Automated Lineament Extraction with Respect to Spatial Resolution of Digital Elevation Model (수치표고모형 공간해상도에 따른 선구조 자동 추출 연구)

  • Park, Seo-Woo;Kim, Geon-Il;Shin, Jin-Ho;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.439-450
    • /
    • 2018
  • The lineament is a linear or curved terrain element to discriminate adjacent geological structures in each other. It has been widely used for analysis of geology, mineral exploration, natural disasters, and earthquake, etc. In the past, the lineament has been extracted using cartographic map or field survey. However, it is possible to extract more efficiently the lineament for a very wide area thanks to development of remote sensing technique. Remotely sensed observation by aircraft, satellite, or digital elevation model (DEM) has been used for visual recognition for manual lineament extraction. Automatic approaches using computer science have been proposed to extract lineament more objectively. In this study, we evaluate the characteristics of lineament which is automatically extracted with respect to difference of spatial resolution of DEM. We utilized two types of DEM: one is Shuttle Radar Topography Mission (SRTM) with spatial resolution of about 90 m (3 arc sec), and the other is the latest world DEM of TerraSAR-X add-on for Global DEM with 12 m spatial resolution. In addition, a global DEM was resampled to produce a DEM with a spatial resolution of 30 m (1 arc sec). The shaded relief map was constructed considering various sun elevation and solar azimuth angle. In order to extract lineament automatically, we used the LINE module in PCI Geomatica software. We found that predominant direction of the extracted lineament is about $N15-25^{\circ}E$ (NNE), regardless of spatial resolution of DEM. However, more fine and detailed lineament were extracted using higher spatial resolution of DEM. The result shows that the lineament density is proportional to the spatial resolution of DEM. Thus, the DEM with appropriate spatial resolution should be selected according to the purpose of the study.

Japan's Missile Detection Capability using Electromagnetic Wave in free space (일본의 자유공간에서 전자파를 이용한 미사일 탐지능력)

  • Lee, Yongsik
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.78-86
    • /
    • 2017
  • Japan has a lot of interest about weapons systems development of surrounding national and has invested heavily in securing intelligence assets to get information about them, because of conflict issues between Japan and Russia with four northern islands, China with Senkaku Islands and entry policy into the Pacific. Japan has used a large budget to detect and intercept ballistic missile for reasons of the launch of the Taepodong missile in 1998. After took over SIGINT equipments which U.S. force had operated in 1950s~1960s, Japan made a technological analysis and advanced IT technology to produce superior equipments. Japan's SDF has installed them in 19 locations across Japan. In addition, Japan's JASDF has installed advanced early warning RADAR to detect aircraft and high speed ballistic missile entering JADIZ with S-band in 28 locations across Japan. It is possible to detect missile launch preparations, engine tests, and launch moments at any time for operation of 6 satellites high resolution reconnaissance system and 6 aegis ships. In close cooperation with the US, Japan is accessible to the SBIRS networks which detects the launch of a ballistic missile in neighboring countries. In the future, Because the United States wants Japan to act as part of the United States in East, south Asia, it is believed that the exchange of intelligence on the surrounding countries between two countries will be enhanced.

KOMPSAT Image Processing and Application (다목적실용위성 영상처리 및 활용)

  • Lee, Kwang-Jae;Kim, Ye-Seul;Chae, Sung-Ho;Oh, Kwan-Young;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1871-1877
    • /
    • 2022
  • In the past, satellite development required enormous budget and time, so only some developed countries possessed satellites. However, with the recent emergence of low-budget satellites such as micro-satellites, many countries around the world are participating in satellite development. Low-orbit and geostationary-orbit satellites are used in various fields such as environment and weather monitoring, precise change detection, and disasters. Recently, it has been actively used for monitoring through deep learning-based object-of-interest detection. Until now, Korea has developed satellites for national demand according to the space development plan, and the satellite image obtained through this is used for various purpose in the public and private sectors. Interest in satellite image is continuously increasing in Korea, and various contests are being held to discover ideas for satellite image application and promote technology development. In this special issue, we would like to introduce the topics that participated in the recently held 2022 Satellite Information Application Contest and research on the processing and utilization of KOMPSAT image data.

A Study on the Environmental Application of Image Radar for Expanding the Use of Next Generation Medium Satellite 5 (차세대중형위성 5호 활용 확대를 위한 영상레이더의 환경분야 활용 방안 연구)

  • Han, Hyeon-gyeong;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1251-1260
    • /
    • 2019
  • Existing environmental spatial information, which has been concentrated on spatial resolution, has limitations in solving realistic environmental problems that must be accompanied by physical and chemical characterization. Accordingly, there is a need for an image radar capable of identifying physical characteristics of an object regardless of weather conditions, day and night, and sunlight. Image radar is used in various fields in the United States and Europe. The next generation of medium-sized satellite No. 5 in Korea, which is under development with the aim of monitoring water disasters, is also looking for ways to expand the scope to various applications based on the existing application range. To this end, we analyzed domestic and international papers (100 works) using image radar, and reviewed KEI 2016 report, domestic papers, and foreign papers. Based on this, various environmental issues were summarized and the effects of when the image radar was used were analyzed and land cover was selected as an environmental issue. In the future, we will embody the technology to improve the accuracy of the land cover map, which is the environmental issue selected in this study, and build the foundation system for the stable use of the land cover map.

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

RPC Model Generation from the Physical Sensor Model (영상의 물리적 센서모델을 이용한 RPC 모델 추출)

  • Kim, Hye-Jin;Kim, Jae-Bin;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.4 s.27
    • /
    • pp.21-27
    • /
    • 2003
  • The rational polynomial coefficients(RPC) model is a generalized sensor model that is used as an alternative for the physical sensor model for IKONOS-2 and QuickBird. As the number of sensors increases along with greater complexity, and as the need for standard sensor model has become important, the applicability of the RPC model is also increasing. The RPC model can be substituted for all sensor models, such as the projective camera the linear pushbroom sensor and the SAR This paper is aimed at generating a RPC model from the physical sensor model of the KOMPSAT-1(Korean Multi-Purpose Satellite) and aerial photography. The KOMPSAT-1 collects $510{\sim}730nm$ panchromatic images with a ground sample distance (GSD) of 6.6m and a swath width of 17 km by pushbroom scanning. We generated the RPC from a physical sensor model of KOMPSAT-1 and aerial photography. The iterative least square solution based on Levenberg-Marquardt algorithm is used to estimate the RPC. In addition, data normalization and regularization are applied to improve the accuracy and minimize noise. And the accuracy of the test was evaluated based on the 2-D image coordinates. From this test, we were able to find that the RPC model is suitable for both KOMPSAT-1 and aerial photography.

  • PDF

Comparative Analysis among Radar Image Filters for Flood Mapping (홍수매핑을 위한 레이더 영상 필터의 비교분석)

  • Kim, Daeseong;Jung, Hyung-Sup;Baek, Wonkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • Due to the characteristics of microwave signals, Radar satellite image has been used for flood detection without weather and time influence. The more methods of flood detection were developed, the more detection rate of flood area has been increased. Since flood causes a lot of damages, flooded area should be distinguished from non flooded area. Also, the detection of flood area should be accurate. Therefore, not only image resolution but also the filtering process is critical to minimize resolution degradation. Although a resolution of radar images become better as technology develops, there were a limited focused on a highly suitable filtering methods for flood detection. Thus, the purpose of this study is to find out the most appropriate filtering method for flood detection by comparing three filtering methods: Lee filter, Frost filter and NL-means filter. Therefore, to compare the filters to detect floods, each filters are applied to the radar image. Comparison was drawn among filtered images. Then, the flood map, results of filtered images are compared in that order. As a result, Frost and NL-means filter are more effective in removing the speckle noise compared to Lee filter. In case of Frost filter, resolution degradation occurred severly during removal of the noise. In case of NL-means filter, shadow effect which could be one of the main reasons that causes false detection were not eliminated comparing to other filters. Nevertheless, result of NL-means filter shows the best detection rate because the number of shadow pixels is relatively low in entire image. Kappa coefficient is scored 0.81 for NL-means filtered image and 0.55, 0.64 and 0.74 follows for non filtered image, Lee filtered image and Frost filtered image respectively. Also, in the process of NL-means filter, speckle noise could be removed without resolution degradation. Accordingly, flooded area could be distinguished effectively from other area in NL-means filtered image.

DEM Generation over Coastal Area using ALOS PALSAR Data - Focus on Coherence and Height Ambiguity - (ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 - 긴밀도와 고도 민감도 분석을 중심으로 -)

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.559-566
    • /
    • 2007
  • The generation of precise digital elevation model (DEM) is very important in coastal area where time series are especially required. Although a LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise DEM has been made using radar interferometry and waterline methods. One of these methods, spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. We attempted to construct DEM using ALOS PALSAR pairs - One pair is 2007/05/22 and 2007/08/22, another pair is 2007/08/22 and 2007/10/22 with respective perpendicular baseline of 820 m, 312m and respective height sensitivity of 75 m and 185m at southern of Ganghwa tidal flat, Siwha- and Hwaong-lake over west coastal of Korea peninsula. Ganghwa tidal flat has low coherence between 0.3 and 0.5 of 2007/05/22 and 2007/08/22 pair. However, Siwha-lake and Hwaong-lake areas have a higher coherence value (From 0.7 and 0.9) than Ganghwa tidal area. The reason of difference coherence value is tidal condition between tidal flat area (Ganghwa) and reclaimed zone (Siwha-lake and Hwaong-lake). Therefore, DEM was constructed by ALOS PALSAR pair over Siwha-lake and Hwaong-lake. If the temporal baseline is enough short to maintain the coherent phases and height sensitivity is enough small, we will be able to successfully construct a precise DEM over coastal area. From now on, more ALOS PALSAR data will be needed to construct precise DEM of West Coast of Korea peninsular.