• Title/Summary/Keyword: InGaAs sensors

Search Result 76, Processing Time 0.021 seconds

Pt-AlGaN/GaN HEMT-based hydrogen gas sensors with and without SiNx post-passivation

  • Vuong, Tuan Anh;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1033-1037
    • /
    • 2019
  • GaN-based sensors have been widely investigated thanks to its potential in detecting the presence of hydrogen. In this study, we fabricated hydrogen gas sensors with AlGaN/GaN heterojunction and investigated how the sensing performance to be affected by SiN surface passivation. The gas sensor employed a high electron mobility transistors (HEMTs) with 30 nm platinum catalyst as a gate to detect the hydrogen presence. SiN layer was deposited by inductively-coupled chemical vapor deposition as post-passivation. The sensors with SiN passivation exhibited hydrogen sensing characteristics with various gas flow rates and concentrations of hydrogen in inert background gas at $200^{\circ}C$ similar to the ones without passivation. Aside from quick response time for both sensors, there are differences in sensitivity and recovery time because of the existence of the passivation layer. The results also confirmed the dependence of sensing performance on gas flow rate and gas concentration.

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

A Quasi-Distributed Fiber-Optic Sensor System using an InGaAs PD Array and FBG Sensors for the Safety Monitoring of Electric Power Systems (InGaAs PD 어레이와 광섬유 격자를 이용한 준분배형 전력설비 안전진단 시스템)

  • Kim, Hyun-Jin;Park, Hyoung-Jun;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.86-91
    • /
    • 2010
  • We constructed a quasi-distributed fiber-optic sensor network for the safety monitoring in power systems. It is possible to construct many of FBG sensors in a line and to be immune from electromagnetic noise. For demodulation analysis of reflected wavelength from FBG sensor, we proposed a simple and fast system using a InGaAs photo-diode array and a holographic diffraction grating. For accuracy improvement of the proposed demodulation system, we applied a Gaussian line-fitting algorithm. We obtained about 4[pm] of wavelength resolution and stability.

Micromachined ZnO Piezoelectric Pressure Sensor and Pyroelectric Infrared Detector in GaAs

  • Park, Jun-Rim;Park, Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.239-244
    • /
    • 1998
  • Piezoelectric pressure sensors and pyroelectric infrared detectors based on ZnO thin film have been integrated with GaAs metal-semiconductor field effect transistor (MESFET) amplifiers. Surface micromachining techniques have been applied in a GaAs MESFET process to form both microsensors and electronic circuits. The on-chip integration of microsensors such as pressure sensors and infrared detectors with GaAs integrated circuits is attractive because of the higher operating temperature up to 200 oC for GaAs devices compared to 125 oC for silicon devices and radiation hardness for infrared imaging applications. The microsensors incorporate a 1${\mu}$m-thick sputtered ZnO capacitor supported by a 2${\mu}$m-thick aluminum membrane formed on a semi-insulating GaAs substrate. The piezoelectric pressure sensor of an area 80${\times}$80 ${\mu}$m2 designed for use as a miniature microphone exhibits 2.99${\mu}$V/${\mu}$ bar sensitivity at 400Hz. The voltage responsivity and the detectivity of a single infrared detector of an area 80${\times}$80 $\mu\textrm{m}$2 is 700 V/W and 6${\times}$108cm$.$ Hz/W at 10Hz respectively, and the time constant of the sensor with the amplifying circuit is 53 ms. Circuits using 4${\mu}$m-gate GaAs MESFETs are fabricated in planar, direct ion-implanted process. The measured transconductance of a 4${\mu}$m-gate GaAs MESFET is 25.6 mS/mm and 12.4 mS/mm at 27 oC and 200oC, respectively. A differential amplifier whose voltage gain in 33.7 dB using 4${\mu}$m gate GaAs MESFETs is fabricated for high selectivity to the physical variable being sensed.

  • PDF

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

Fabrication of a depletion mode p-channel GaAs MOSFET using $Al_2O_3$ gate insulator ($Al_2O_3$ 게이트 절연막을 이용한 공핍형 p-채널 GaAs MOSFET의 제조)

  • Jun, Bon-Keun;Lee, Tae-Hyun;Lee, Jung-Hee;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.421-426
    • /
    • 1999
  • In this paper, we present p-channel GaAs MOSFET having $Al_2O_3$ as gate insulator fabricated on a semi-insulating GaAs substrate, which can be operated in the depletion mode. $1\;{\mu}m$ thick undoped GaAs buffer layer, $4000\;{\AA}$ thick p-type GaAs epi-layer, undoped $500{\AA}$ thick AlAs layer, and $50\;{\AA}$ thick GaAs cap layer were subsequently grown by molecular beam epitaxy(MBE) on (100) oriented semi-insulating GaAs substrate and this wafer was oxidized. AlAs layer was fully oxidized as a $Al_2O_3$ thin film. The I-V, $g_m$, breakdown charateristics of the fabricated GaAs MOSFET showed that wet thermal oxidation of AlAs/GaAs epilayer/S I GaAs was successful in realizing depletion mode p-channel GaAs MOSFET.

  • PDF

Surface Passivation Method for GaN UV Photodetectors Using Oxygen Annealing Treatment

  • Lee, Chang-Ju;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.252-256
    • /
    • 2016
  • Epitaxially grown GaN layers have a high surface state density, which typically results in a surface leakage current and a photoresponse in undesirable wavelengths in GaN optoelectronic devices. Surface passivation is, therefore, an important process necessary to prevent performance degradation of GaN UV photodetectors. In this study, we propose oxygen-enhanced thermal treatment as a simple surface passivation process without capping layers. The GaN UV photodetector fabricated using a thermal annealing process exhibits improved electrical and photoresponsive characteristics such as a reduced dark current and an enhanced photoresponsive current and UV-to-visible rejection ratio. The results of this study show that the proposed surface passivation method would be useful to enhance the reliability of GaN-based optoelectronic devices.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.

Temperature-dependent DC Characteristics of Homojunction InGaAs vertical Fin TFETs (동종 접합 InGaAs 수직형 Fin TFET의 온도 의존 DC 특성에 대한 연구)

  • Baek, Ji-Min;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.275-278
    • /
    • 2020
  • In this study, we evaluated the temperature-dependent characteristics of homojunction InGaAs vertical Fin-shaped Tunnel Field-Effect Transistors (Fin TFETs), which were fabricated using a novel nano-fin patterning technique in which the Au electroplating and the high-temperature InGaAs dry-etching processes were combined. The fabricated homojunction InGaAs vertical Fin TFETs, with a fin width and gate length of 60 nm and 100 nm, respectively, exhibited excellent device characteristics, such as a minimum subthreshold swing of 80 mV/decade for drain voltage (VDS) = 0.3 V at 300 K. We also analyzed the temperature-dependent characteristics of the fabricated TFETs and confirmed that the on-state characteristics were insensitive to temperature variations. From 77 K to 300 K, the subthreshold swing at gate voltage (VGS) = threshold voltage (VT), and it was constant at 115 mV/decade, thereby indicating that the conduction mechanism through band-to-band tunneling influenced the on-state characteristics of the devices.