• Title/Summary/Keyword: In-vehicle communication network

Search Result 492, Processing Time 0.029 seconds

Design and Evaluation of Telematics User Interface for Ubiquitous Vehicle

  • Hong, Won-Kee;Kim, Tae-Hwan;Ko, Jaepil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2014
  • In the ubiquitous computing environment, a ubiquitous vehicle will be a communication node in the vehicular network as well as the means of ground transportation. It will make humans and vehicles seamlessly and remotely connected. Especially, one of the prominent services in the ubiquitous vehicle is the vehicle remote operation. However, mutual-collaboration with the in-vehicle communication network, the vehicle-to-vehicle communication network and the vehicle-to-roadside communication network is required to provide vehicle remote operation services. In this paper, an Internet-based human-vehicle interfaces and a network architecture is presented to provide remote vehicle control and diagnosis services. The performance of the proposed system is evaluated through a design and implementation in terms of the round trip time taken to get a vehicle remote operation service.

Design of Gateway for In-vehicle Sensor Network

  • Kim, Tae-Hwan;Lee, Seung-Il;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.73-76
    • /
    • 2005
  • The advanced information and communication technology gives vehicles another role of the third digital space, merging a physical space with a virtual space in a ubiquitous society. In the ubiquitous environment, the vehicle becomes a sensor node, which has a computing and communication capability in the digital space of wired and wireless network. An intelligent vehicle information system with a remote control and diagnosis is one of the future vehicle systems that we can expect in the ubiquitous environment. However, for the intelligent vehicle system, many issues such as vehicle mobility, in-vehicle communication, service platform and network convergence should be resolved. In this paper, an in-vehicle gateway is presented for an intelligent vehicle information system to make an access to heterogeneous networks. It gives an access to the server systems on the internet via CDMA-based hierarchical module architecture. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixec place, 707ms at rural area and 910ms at urban area.

  • PDF

Reliability Improvement of In-Vehicle Networks by Using Wireless Communication Network and Application to ESC Systems (무선 통신 네트워크를 이용한 차량 내 네트워크의 신뢰성 개선 및 ESC 시스템에의 응용)

  • Lee, Jeong Deok;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1448-1453
    • /
    • 2015
  • In this paper, we propose an alternative method of communication to improve the reliability of in-vehicle networks by jointly using wireless communication networks. Wired Communication networks have been used in vehicles for the monitoring and the control of vehicle motion, however, the disconnection of wires or hardware fault of networks may cause a critical problem in vehicles. If the network manager detects a disconnection or faults in wired in-vehicle network like the Controller Area Network(CAN), it can redirect the communication path from the wired to the wireless communication like the Zigbee network. To show the validity and the effectiveness of the proposed in-vehicle network architecture, we implement the Electronic Stability Control(ESC) system as ECU-In-the-Loop Simulation(EILS) and verify that the control performance can be kept well even if some hardware faults like disconnection of wires occur.

Design of an In-vehicle Intelligent Information System for Remote Management (차량 원격 진단 및 관리를 위한 차량 지능 정보시스템의 설계)

  • Kim, Tae-Hwan;Lee, Seung-Il;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1023-1026
    • /
    • 2005
  • In the ubiquitous computing environment, an intelligent vehicle is defined as a sensor node with a capability of intelligence and communication in a wire and wireless network space. To make it real, a lot of problems should be addressed in the aspect of vehicle mobility, in-vehicle communication, common service platform and the connection of heterogeneous networks to provide a driver with several intelligent information services beyond the time and space. In this paper, we present an intelligent information system for managing in-vehicle sensor network and a vehicle gateway for connecting the external networks. The in-vehicle sensor network connected with several sensor nodes is used to collect sensor data and control the vehicle based on CAN protocol. Each sensor node is equipped with a reusable modular node architecture, which contains a common CAN stack, a message manager and an event handler. The vehicle gateway makes vehicle control and diagnosis from a remote host possible by connecting the in-vehicle sensor network with an external network. Specifically, it gives an access to the external mobile communication network such as CDMA. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixed place, 707ms at rural area and 910ms at urban area.

  • PDF

Implementation of Inter-vehicle Communication System and Experiments of Longitudinal Vehicle Platoon Control via a Testbed

  • Kim, Tae-Min;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.711-716
    • /
    • 2003
  • This study considers the implementation issues of the inter-vehicle communication system for the vehicle platoon experiments via a testbed. The testbed, which consists of three scale vehicles and one RCS(remote control station), is developed as a tool for functions evaluation between simulation studies and full-sized vehicle researches in the previous study. The cooperative communication of the vehicle-to-vehicle or the vehicle-to-roadside plays a key role for keeping the relative spacing of vehicles small in a vehicle platoon. The static platoon control, where the number of vehicles remains constant, is sufficient for the information to be transmitted in the suitably fixed interval, while the dynamic platoon control such as merge or split requires more flexible network architecture for the dynamical coordination of the communication sequence. In this study, the wireless communication device and the reliable protocol of the flexible network architecture are implemented for our testbed, using the low-cost, ISM band transceiver and the 8-bit microcontroller.

  • PDF

A XML based Communication Framework for In-Vehicle Networks

  • Kim, Jin-Deog;Yun, Sang-Du;Yu, Yun-Sik
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.554-559
    • /
    • 2010
  • Recently, various in-vehicle networks have been developed respectively in order to accomplish their own purpose such as CAN and MOST. Various electronic devices for vehicle are controllable by the advent of networks attached to the vehicle. However, the networks also come with a variety of unique features in each network-specific communication which creates difficulty using and supporting the interoperable services among the networks. To solve this problem, each network needs a standard integration framework. In this paper, a framework is proposed and implemented. It consists of a standard protocol using XML to improve compatibility and portability. The framework makes each network interoperable by applying unique information and messages of the network in the XML standard document. The results obtained by implementation show that the framework supports the efficient communication of data between heterogeneous invehicle networks.

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

Performance Analysis of CAN-FD Based Network Against Network Topology (네트워크 토폴로지에 따른 CAN-FD 통신 영향성 분석)

  • Seo, Sukhyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.351-358
    • /
    • 2017
  • The most common communication interface for automotive electronic control devices is CAN (Controller Area Network). Sine CAN was first adopted to Daimler vehicles in 1991, all of automobile manufacturers use the CAN communication for in-vehicle networks. However, as the number of electronic control devices connected to the CAN network rapidly increases, the CAN protocol reaches the limit of technology. To overcome this limitation, Bosch introduced the new communication protocol, that is CAN-FD (Flexible Data-rate). In this paper, we analyze the characteristics and limitations of CAN-FD communication according to the topology under the in-vehicle wiring harness environment designed based on the existing classic CAN communication.

Convergence Security Approach for Motor Vehicle Communication Network Hacking Attack Prevention: Focus on Bluetooth Cases (자동차 내부망 통신네트워크 해킹범죄예방을 위한 융합보안적 대응방안: Bluetooth 활용사례를 중심으로)

  • Choi, Kwan;Kim, Minchi
    • Convergence Security Journal
    • /
    • v.16 no.6_2
    • /
    • pp.99-107
    • /
    • 2016
  • The purpose of this study is to analyse motor vehicle communication network hacking attacks and to provide its prevention. First, the definition of motor vehicle communication network was provided and types of in-vehicle communication network were discussed. Also, bluetooth hacking attack cases were analysed in order to illustrate dangers of hacking attacks. Based on the analysis, two preventive measures were provided. First, Motor Vehicle Safety Standard Law should be revised. Although the law provides the definition of electronic control system and its standards as well as manufacturing and maintenance for safe driving standards, the law does not have standards for electronic control system hacking prevention and defensive security programs or firmware. Second, to protect motor vehicle communication network, it is necessary to create new laws for motor vehicle communication network protection.

Data Dissemination in LTE-D2D Based Vehicular Network (LTE-D2D 차량 네트워크에서 정보 전달 방법)

  • Shim, Yong-Hui;Kim, Young-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.602-612
    • /
    • 2015
  • Current IEEE 802.11p which is suggested for vehicle to vehicle communication supports one hop communication. Thus, it has a limitation to carry out efficient data dissemination. In this thesis, we suggest LTE-D2D based vehicle network to provide efficient data dissemination in the vehicle environment. In this network architecture, we use name based message with IP packet options and we put the intermediate vehicle node called 'super vehicle node' and each normal vehicle node in the cell requests data to the super vehicle node. The super vehicle node responses data to the normal vehicle node. Performance analysis is based mathematical modeling. We compare LTE cellular network to LTE-D2D based vehicle network about throughput according to packet delivery time.