• Title/Summary/Keyword: In-structure response spectrum

Search Result 305, Processing Time 0.025 seconds

Seismic response and retrofitting proposals of the St. Titus Chruch, Heraklion, Crete, Greece

  • Tzanakis, Michael J.;Papagiannopoulos, George A.;Hatzigeorgiou, George D.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1347-1367
    • /
    • 2016
  • The purpose of this work is to investigate the seismic behavior of St. Titus Church in Heraklion, Crete, Greece as well as the need of its seismic retrofitting. A numerical model of the Church is constructed using shell finite elements and it is then seismically examined using response spectrum and linear time-history analyses. Effects of soil-structure interaction have been also taken into account. The Church without retrofit is expected to exhibit extensive tensile failures and many compressive ones. Aiming to maintain the architectural character of the structure as well as to increase its seismic resistance, a retrofitting procedure involving injection of cement grout in conjunction with reinforced concrete jacketing to the internal side of the masonry walls is proposed. A numerical implementation of the proposed seismic retrofitting is performed and its effect is evaluated by response spectrum and linear time-history analyses. From the results of these analyses, it is shown that compressive failures are eliminated while only few tensile failures of local character take place.

A Study on Characteristics and Dynamic Response Spectrum of Near Fault Ground Motions (근거리지진의 특성과 동적응답스펙트럼에 관한 연구)

  • Bang, Myung-Seok;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.143-151
    • /
    • 2005
  • In this study, it is demonstrated that how the effect of the Near Fault Ground Motion affects the response of the structure. Considering the general characteristic of Near Fault Ground Motion the characteristics of Near Fault Ground Motions is analysed by elastic response spectrums, and the inelastic response spectrum is evaluated with the ductility and the yield strength to consider the inelastic behavior which couldn't be simulated through the elastic response spectrum. The result of this study shows that the effect of Near Fault Ground Motion should be considered in the long period range of long span structures but the domestic seismic design code was developed based on Far Fault Ground Motions, so the effects of Near Fault Ground Motions, which is very serious especially in large structures with a long period, are not considered. Therefore, the effect of the Near Fault Ground Motion has to be examined especially in the seismic performance evaluation of long period structure.

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

Experimental Study on the Shock Response of a Cylindrical Structure with the Bolted Joint (조인트를 가진 원통형 구조물의 충격 응답에 관한 실험적 연구)

  • Jeon, Ho-Chan;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.581-589
    • /
    • 2019
  • Guided missiles assembled with the bolted joint are subjected to various shock loading conditions while flying in the air and operating on the ground or platform. Especially, It is important to analyze the effect of the shock load on the structure because it affects the structure for a short duration time while its acceleration magnitude is quite large. In this study, mechanical shock tests on the structure with the bolted joint have been carried out to measure the acceleration changes of the structure against external shock loads by electrical exciter. Variation of dynamic characteristics of a structure with fastening methods and fastening forces has been investigated through Shock Response Spectrum analysis.

Evaluation of Displacement-based Approaches for a Shear Wall Structure (전단벽구조체에 대한 변위기반 내진성능법의 평가)

  • 최상현;현창헌;최강룡;김문수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.465-472
    • /
    • 2003
  • In this paper, the displacement-based seismic design approaches are evaluated utilizing shaking-table test data of a 1:3 scaled reinforced concrete (RC) bearing wall structure Provided by IAEA. The maximum responses of the structure are estimated using the two prominent displacement-based approaches, i.e., the capacity spectrum method and the displacement coefficient method, and compared with the measured responses. For comparison purpose, linear and nonlinear time history analyses and response spectrum analysis are also performed. The results indicate that the capacity spectrum method underestimates the response of the structure In inelastic range while the displacement coefficient method yields reasonable values in general.

  • PDF

Inelastic Response Characteristic Analysis of Frame Structures Subjected to Near Fault Ground Motion (근거리지진을 받는 골조 구조물의 비탄성응답 특성 분석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.273-284
    • /
    • 2006
  • In this study, After considering the general characteristic of Near Fault Ground Motion, the inelastic response spectrum is made to evaluate using the change of ductility and yield stiffness coefficient according to the inelastic behavior of structures which couldn't be examined through the elastic response spectrum. It is conducted to the elastic and inelastic time history analysis about the long period structure which could reflect the characteristic of Near Fault Ground Motion with the best and it is also examined the aspect of response distribution about the input data. Moreover, the response characteristic of structure is analyzed by investigating the plastic hinge for the purpose of grasp about the inelastic behavior of structure.

Response of Base Isolation System Subjected to Spectrum Matched Input Ground Motions (스펙트럼 적합 입력지반운동에 의한 면진구조의 응답 특성)

  • Kim, Jung Han;Kim, Min Kyu;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2013
  • Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, response history analysis should be performed. In this study, the response of base isolation system was analyzed by response history analysis for the seismic performance assessment. Firstly, several seismic assessment criteria for a nuclear power plant structure were reviewed for the nonlinear response history analysis. Based on these criteria, the spectrum matched ground motion generation method modifying a seed earthquake ground motion time history was adjusted. Using these spectrum matched accelerograms, the distribution of displacement responses of the simplified base isolation system was evaluated. The resulting seismic responses excited by the modified ground motion time histories and the synthesized time history generated by stochastic approach were compared. And the response analysis of the base isolation system considering the different intensities in each orthogonal direction was performed.

A Method for Selecting Ground Motions Considering Target Response Spectrum Mean, Variance and Correlation - I Algorithm (응답 스펙트럼의 평균과 분산, 상관관계를 모두 고려한 지반운동 선정 방법 - I 알고리즘)

  • Han, Sang Whan;Ha, Seong Jin;Cho, Sun Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • It is important to select an accurate set of ground motions when conducting linear and nonlinear response history analyses of structures. This study proposes a method for selecting ground motions from a ground motion library with response spectra that match the target response spectrum mean, variance and correlation structures. This study also has addressed the determination of an appropriate value for the weight factor of a correlation structure. The proposed method is conceptually simple and straightforward, and does not involve a simulation algorithm. In this method, a desired number of ground motions are sequentially selected from first to last. The proposed method can be also used for selecting ground motions with response spectra that match the conditional spectrum. The accuracy and efficiency of the proposed procedure are verified with numerical examples.

Development of Stochastic Seismic Performance Evaluation Method for Structural Performance Point Based on Capacity Spectrum Method (역량스펙트럼법을 통한 구조물 성능점의 확률적 기반 내진성능평가기법 개발)

  • Choi, Insub;Jang, Jisang;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, a method of probabilistic evaluation of the performance point of the structure obtained by capacity spectrum method (CSM) is presented. The performance point of the 4-story and 1-bay steel structure was determined by using CSM according to ATC-40. In order to analyze whether the demand spectrums exceed the performance limit of the structure, the limit displacements are derived for the performance limit of the structure defined from the plastic deformation angle of the structural member. In addition, by selecting a total of 30 artificial seismic wave having the response spectrum similar to the design response spectrum, the fragility curves were derived by examining whether the response spectrum obtained from the artificial seismic wave were exceeded each performance limit according to the spectral acceleration. The maximum likelihood method was used to derive the fragility curve using observed excess probabilities. It has been confirmed that there exists a probability that the response acceleration value of the design response spectrum corresponding to each performance limit exceeds the performance limit. This method has a merit that the stochastic evaluation can be performed considering the uncertainty of the seismic waves with respect to the performance point of the structure, and the analysis time can be shortened because the incremental dynamic analysis (IDA) is not necessary.