• Title/Summary/Keyword: In-situ rock stress

Search Result 147, Processing Time 0.024 seconds

An Analysis for the Stress Redistribution around Tunnel Face Using Three-Dimensional Finite Element Method (3차원 유한요소법을 이용한 터널 막장 주위에서의 응력 재분배 해석에 관한 연구)

  • 문선경;이희근
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.95-103
    • /
    • 1995
  • In this paper the stress redistribution around tunnel face was analyzed by using a three-dimensional finite element model. The effects of in-situ stress levels, excavation sequences, stiffness difference between the hard ground and the weak zone on the stress redistributions were considered. Displacement and stress changes at tunnel crown, side wall, and invert were investigated throughout the sequential excavation. To show ground response, percentage of the displacement and stress variations are used as a function of normalized distance that is between the face and monitoring section. Preceding displacements and stress variations were presented to be adopted in the two-dimensional tunnel analysis.

  • PDF

Analytical Formula for the Equivalent Mohr-Coulomb Strength Parameters Best-fitting the Generalized Hoek-Brown Criterion in an Arbitrary Range of Minor Principal Stress (임의 최소주응력 구간에서 일반화된 Hoek-Brown 파괴기준식을 최적 근사하는 등가 Mohr-Coulomb 강도정수 계산식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.172-183
    • /
    • 2019
  • The generalized Hoek-Brown (GHB) failure criterion developed by Hoek et al. (2002) is a nonlinear function which defines a stress condition at failure of rock mass. The relevant strength parameter values are systematically determined using the GSI value. Since GSI index is a value quantifying the condition of in-situ rock mass, the GHB criterion is a practical failure condition which can take into the consideration of in-situ rock mass quality. Considering that most rock mechanics engineers are familiar with the linear Mohr-Coulomb criterion and that many rock engineering softwares incorporate Mohr-Coulomb criterion, the equations for the equivalent friction angle and cohesion were also proposed along with the release of the GHB criterion. The proposed equations, however, fix the lower limit of the minor principal stress range, where the linear best-fitting is performed, with the tensile strength of the rock mass. Therefore, if the tensile stress is not expected in the domain of analysis, the calculated equivalent friction angle and cohesion based on the equations in Hoek et al. (2002) could be less accurate. In order to overcome this disadvantage of the existing equations for equivalent friction angle and cohesion, this study proposes the analytical formula which can calculate optimal equivalent friction angle and cohesion in any minor principal stress interval, and verified the accuracy of the derived formula.

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

Significance of In-Situ Stresses in Stability Analysis of Underground Nuclear Waste Disposal Repository (방사성 폐기물 지하처분장의 안정성 분석에 있어서 암반내 초기응력의 역할과 의미)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.26-31
    • /
    • 2007
  • The 11 nuclear power plants have been taking charge of more than 40% of the total electrical power development in Korea. In addition to the existing nuclear power plants at Gori, Wolsung, Youngkwang, etc., the 12 nuclear power plants are expected to be newly established until 2006. So, the 23 nuclear power plants will produce the electric power as much as more than 50% of the national gross production. However the nuclear power plants are inevitably generating the detrimental atomic wastes. Therefore the disposal techniques for the nuclear wastes should be ensured considering a very high safety factor. According to the basic researches in KAERI, the underground disposal repositories are reported to be most favorable for Korea. The KBS-3 disposal system has been strongly suggested by KAERI and this system has a deep tunnel with several disposal boreholes in tunnel floor. The nuclear wastes, which are sealed tightly in a canister, will be disposed in these boreholes. Considering the disposal tunnel in a great depth, the in-situ stress regimes will affect severely the tunnel stability. Consequently the effect of the in-situ stresses on the disposal tunnel and the role of the in-situ stresses in tunnel stability analysis are examined by the numerical studies.

Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst

  • Jiang, Jin-Quan;Wang, Pu;Jiang, Li-Shuai;Zheng, Peng-Qiang;Feng, Fan
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • The study of the mining effect influenced by a normal fault has great significance concerning the prediction and prevention of fault rock burst. According to the occurrence condition of a normal fault, the stress evolution of the working face and fault plane, the movement characteristics of overlying strata, and the law of fault slipping when the working face advances from footwall to hanging wall are studied utilizing UDEC numerical simulation. Then the inducing-mechanism of fault rock burst is revealed. Results show that in pre-mining, the in situ stress distribution of two fault walls in the fault-affected zone is notably different. When the working face mines in the footwall, the abutment stress distributes in a "double peak" pattern. The ratio of shear stress to normal stress and the fault slipping have the obvious spatial and temporal characteristics because they vary gradually from the higher layer to the lower one orderly. The variation of roof subsidence is in S-shape which includes slow deformation, violent slipping, deformation induced by the hanging wall strata rotation, and movement stability. The simulation results are verified via several engineering cases of fault rock burst. Moreover, it can provide a reference for prevention and control of rock burst in a fault-affected zone under similar conditions.

Rock Mechanics-Major Projects and Research Topics in Korea (암반공학-우리나라에서의 과제와 연구주제)

  • Chung, So-Keul
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.451-471
    • /
    • 2006
  • Major projects and research topics in the field of rock mechanics are analyzed to obtain the following results: $\cdot$ Rock mechanics deals with the behavior of deformation, failure and displacement of the rock and rock mass on the basis of geological basics. Discontinuities in the rock mass are the most important parameters to control the behavior of rock mass around underground openings. $\cdot$ The objective of site investigation and testing is to determine the strength properties of the rock mass and the in situ stress regime. Specimens for laboratory and in situ tests are to be selected in order that the results of the tests give the representative properties oi the rock mass of the site in question. $\cdot$ The result of a numerical model would be better evaluated not quantitatively but qualitatively. The displacement behavior of the rock mass has to be monitored properly for the NATM (New Austrian Tunneling Method) principles. $\cdot$ The stability of rock slope is to be evaluated preferably by back analysis with strength parameters, such as cohesion and friction angle.

Numerical Analysis of Tunnel Lining under Loosening Load (수치해석을 통한 이완하중에 따른 터널 라이닝의 거동 분석)

  • Park, Jung-Jin;Kim, Yong-Min;Hwang, Taik-Jean;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.35-45
    • /
    • 2011
  • Cost effective design and construction are necessary to establish the design concept of tunnel lining. Loosening load acting on the concrete lining is compared with Terzaghi tunnel theory and numerical analysis. It is analyzed under the condition of weathered rock and soil with varying in-situ stress ratio ($K_0$). Based on the result, loosening load calculated by Tcrzaghi tunnel theory is much greater than numerical analysis results. And the load calculated in weathered soil is lager than weathered rock condition. As in-situ stress ratio increases, the stress acting on the tunnel lining decreases in Terzaghi theory rapidly, whereas there is little effect in numerical analysis.

True Triaxial Physical Model Experiment on Brittle Failure Grade and Failure Initiation Stress (취성파괴수준과 파괴개시시점에 관한 진삼축 모형실험연구)

  • Cheon, Dae-Sung;Park, Chan;Park, Chul-Whan;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.128-138
    • /
    • 2007
  • At low in-situ stress, the continuity and distribution of natural fractures in rock mass predominantly control the failure processes. However at high in-situ stress, the failure process are affected and eventually dominated by stress-induced fractures preferentially growing parallel to the excavation boundary. This fracturing is often observed in brittle type of failure such as slabbing or spatting. Recent studies on the stress- or excavation-induced damage of rock revealed its importance especially in a highly stressed regime. In order to evaluate the brittle failure around a deep underground opening, physical model experiments were carried out. For the experiments a new tue triaxial testing system was made. According to visual observation and acoustic emission detection, brittle failure grades were classified under three categories. The test results indicate that where higher horizontal stress, acting perpendicular $(S_{H2})$ and parallel $(S_{H1})$ to the axis of the tunnel respectively, were applied, the failure grade at a constant vertical stress level (Sy) was lowered. The failure initiation stress was also increased with the increasing $S_{H1}\;and\;S_{H2}$. From the multi-variable regression on failure initiation stress and true triaxial stress conditions, $f(S_v,\;S_{H1},\;S_{H2})$ was proposed.

The new approach to calculate pulse wave returning energy vs. mechanical energy of rock specimen in triaxial test

  • Heidari, Mojtaba;Ajalloeian, Rassoul;Fard, Akbar Ghazi;Isfahanian, Mahmoud Hashemi
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • In this paper, we discuss a mathematical method for determining the return energy of the wave from the sample and comparing it with the mechanical energy consumed to change the dimension of the sample in the triaxial test of the rock. We represent a method to determine the mechanical energy and then we provide how to calculate the return energy of the wave. However, the static energy and pulse return energy will show higher amounts with axial pressure increase. Three types of clastic sedimentary rocks including sandstone, pyroclastic rock, and argillitic tuff were selected. The sandstone showed the highest strength, Young's modulus and ultrasonic P and S waves' velocities versus others in the triaxial test. Also, from the received P wavelet, the calculated pulse wave returning energy indicated the best correlation between axial stress compared to wave velocities in all specimens. The fact that the return energy decreases or increases is related to increasing lateral stress and depends on the geological characteristics of the rock. This method can be used to determine the stresses on the rock as well as its in-situ modulus in projects that are located at high depths of the earth.

Deformation Behavoirs of Arched Openings Related with Roof Curvature (천반 곡률반경에 따른 아치형 공동의 변형거동에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.10-18
    • /
    • 1996
  • Arched openings are generally excavated in underground construction works. Since stress distribution around openings depends on geological structure in rock mass, any shape of arched openings fully conformed with in-situ stress condition should be recommended to maintain mechanical safety of structures. Shape of arched openings is specified by both roof curvature and height-width ratio, and especially this report presents deformation behaviors related with roof curvature. Scale model tests and numerical studies of various shaped openings are conducted, where rectangular opening shows the greatest convergence. Through the anlayses of various arched opengings, as radius of roof curvature is increased, roof lowering and sidewall closure are remarkably increased, whereas floor heaving is increased little by little. By the way, it is useful that displacements of openings are roughly estimated in the stage of preliminary investigation. To find out elastic displacements of arched openings with any roof curvature, regressional formula and charts by least square method are represented. In addition elastoplastic deformation behavoirs of arched openings concerning associated adn non-associated flow rule are discussed.

  • PDF