• Title/Summary/Keyword: In-situ precipitation

Search Result 72, Processing Time 0.033 seconds

Long-term Water Quality Fluctuations in Daechung Reservoir and the Limiting Nutrient Evaluations Using In Situ Enclosure Nutrient Enrichment Bioassays (NEBs) (대청호에서 장기간 수질변동 및 인위적 Enclosure 영양염 투여실험에 따른 제한 영양염류 평가)

  • Park, Hyang-Mi;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2012
  • The objectives of this study were to elucidate spatio-temporal heterogeneity of water chemistry and develop empirical models using trophic variables in Daechung Reservoir during 2005-2010 along with in situ tests of nutrient enrichment bioassays (NEB). The relations of water quality parameters in regard to precipitation showed that seasonal and interannual fluctuations of biological oxygen demand (BOD), total nitrogen (TN) and pH were minor, whereas conductivity, suspended solids (SS), and total phosphorus (TP) were largely varied in response to the magnitude of rainfall. The CHL maxima occurred immediately after the spate of TP during the high flow, indicating that phytoplankton growth was directly controlled by phosphorus. Empirical linear models of CHL-TP indicated that the variation of CHL in premonsoon was accounted 60% ($R^2$ = 0.60, p < 0.05, n = 54) by TP. In the mean time, empirical models of annual CHL-TN showed that the variation of CHL was weakly accounted ($R^2$ = 0.16, p < 0.001) by TN and more strongly ($R^2$ = 0.44, p < 0.001) by TP. Thus, the variation of CHL was more explained by the variation of TP than TN. In situ tests of Nutrient Enrichment Bioassays (NEBs) showed that the growth of CHL was greater in the P-treatments (as $PO_4-P$) than the control and N-treatment (as $NO_3-P$). Overall, our results suggest that phosphorus was aprimary limiting nutrient controlling the seasonal phytoplankton growth, based on the in situ experiments of NEBs.

In-situ Monitoring of Matric Suctions in a Weathered Soil Slope (풍화토 사면에서 강우로 인한 간극수압 변화에 대한 실험연구)

  • 이인모;조우성;김영욱;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • Rainfall-induced landslides in a weathered granite soil slope usually happen on shallow slip surfaces above the groundwater table. The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure (or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time elapse in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 in order to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. Finite-element transient seepage analyses are also conducted using SEEP/W. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with the change of depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

Synthesis and Crystal Structure Characterization of Ga2O3 Powder by Precipitation and Polymerized Complex Methods (침전법과 착체중합법을 이용한 Ga2O3 분말의 합성 및 결정구조 분석)

  • Jung, Jong-Yeol;Kim, Sang-Hun;Kang, Eun-Tae;Han, Kyu-Sung;Kim, Jin-Ho;Hwang, Kwang-Teak;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.156-161
    • /
    • 2014
  • Gallium oxide ($Ga_2O_3$) powders were synthesized using a precipitation method and a polymerized complex method. TG-DSC, SEM, and XRD were performed to investigate the phase and morphology of the $Ga_2O_3$. In situ high-temperature XRD analysis revealed the crystal structure of $Ga_2O_3$ at different temperatures. The $Ga_2O_3$ obtained using the precipitation method and polymerized complex method were generally spherical-shaped particles and their average particle size was approximately 80 nm and $1{\mu}m$, respectively. The crystal structure of the $Ga_2O_3$ prepared by the precipitation method was changed from rhombohedral to monoclinic at $700^{\circ}C$, while monoclinic $Ga_2O_3$ was obtained directly from the precursor by the polymerized complex method.

A Study on the Aging Behavior of a Mg-8.5Li-4.5Al alloy by Differential Scanning Calorimetry (열분석법에 의한 Mg-8.5Li-4.5Al합금의 시효거동 연구)

  • Kim, Y.W.;Hwang, Y.H.;Park, T.W.;Kim, D.H.;Hong, C.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.255-265
    • /
    • 1997
  • Precipitation and strengthening mechanisms in squeeze cast Mg-8.5wt%Li-4.5wt%Al have been investigated by differential scanning calorimetry(DSC), scanning electron microscopy(SEM), in-situ and ex-situ X-ray diffraction analysis and hardness measurement. Special emphasis was placed on the investigation of the precipitation behavior by the DSC technique. Microstructural and calorimetric analysis showed that ${\theta}$ and ${\delta}$ precipitates in the b.c.c. ${\beta}$ phase matrix, forming two exothermic peaks at the temperature ranges of $130^{\circ}C{\sim}180^{\circ}C$ and $236^{\circ}C{\sim}280^{\circ}C$. ${\theta}$ and ${\delta}$ dissolve into the matrix forming an endothermic peak at the temperature range of $280^{\circ}C{\sim}352^{\circ}C$. The as-cast microstructure consists of ${\alpha}$, ${\beta}$ and ${\delta}$. Peak strength was obtained after aging for 1 hour at $50^{\circ}C$. The aging time required for the peak strength decreased as the aging temperature increases. The hardness decrease during overaging was due to the coarsening of ${\theta}$ precipitates. Microhardness measurement showed that variation of the hardness of ${\beta}$ matrix was more pronounced than that of the ${\alpha}$ phase, indicating that the ${\beta}$ phase is more responsible for the strengthening of the Mg-8.5wt%Li-4.5wt%Al alloy.

  • PDF

Downscaling GPM Precipitation Using Finer-scale MODIS Based Optical Image in Korean Peninsula (MODIS 광학 영상 자료를 통한 한반도 GPM 강우 자료의 상세화 기법)

  • Oh, Seungcheol;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.749-762
    • /
    • 2020
  • Precipitation is closely related to various hydrometeorological phenomena, such as runoff and evapotranspiration. In Korean Peninsula, observing rainfall intensity using weather radar and rain gauge network is dominating due to their accurate, intuitive and precise detecting power. However,since these methods are not suitable at ungauged regions, rainfall detection using satellite is required. Satellite-based rainfall data has coarse spatial resolution (10 km, 25 km), and has a limited range of usage due to its reliability of data. The aim of this study is to obtain finer scale precipitation. Especially, to make the applicability of satellite higher at ungauged regions, 10 km satellite-based rainfall data was downscaled to 1 km data using MODerate Resolution Imaging Spectroradiometer (MODIS) based cloud property. Downscaled precipitation was verified in urban region, which has complex topographical and environmental characteristics. Correlation coefficient was similar in summer (+0), decreased in spring (-0.08) and autumn (-0.01), and increased in winter (+0.04) season compared to Global Precipitation Measurement (GPM) based precipitation. Downscaling without calibration using in situ data could be useful in areas where rain gauge system is not sufficient or ground observations are rarely available.

A Study on Cu-Fe Multifilamentary Composites Produced by in situ Process (in situ법(法)에 의한 Cu-Fe계(系) 다섬유상(多纖維狀) 복합재료제조(複合材料製造)에 관한 연구(硏究))

  • Shur, S.J.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.2
    • /
    • pp.9-18
    • /
    • 1991
  • Among the many maunfactured processes of producing multi filamentary composites, in situ process is widely used owing tv its simplicity and easyness of mass production. In this study, the mechanical and electromagnetic properties of Cu-Fe composite materials was investigated. The tensile strength of the Cu-Fe wires increased as the Fe content and reduction ratio were increased. The Cu-30 wt%Fe composites had the best properties in terms of figure merits compared to the other Cu-Fe composites made in this study or the commercially manufactured 6/1 ACSR cables of Cu cable. The coercivity was decreased by increasing Fe content, but the squareness was increased greatly. As increasing reduction ratio, the coercivity and squareness increased up to the maximum points, and then decreased. For example, the maximum values were obtained at $0.09mm{\phi}$ for Cu-30 wt%Fe composites and at $0.066mm{\phi}$ for Cu-45 wt%Fe composites. The magnetic property of Cu-Fe wires produced by precipitation treatment was higher than that of Cu-Fe wires produced by thermomechanical treatment. By annealing Cu-Fe wires after drawing process, the coercivity, remanence and squareness were improved.

  • PDF

TOWARDS A SAFER ENVIRONMENT: 3) PHOSPHATIC CLAYS AS SOLUTION FOR REMOVING PB2+ FROM WASTEWATER

  • ABDALLAH SAMY MOHAMED
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1179-1180
    • /
    • 2005
  • To immobilize the pollutants from wastewater in situ, two phosphatic clays collected from different areas in Egypt (eastern and western Sebaia, Aswan-Isna, Upper Egypt) used to remove contaminant ions from industrial wastewater. Obtained results confirmed the strong relationship between phosphatic clay and Pb elimination from wastewater. The sensitivity classification of phosphatic clay toward ions retained as described in three categories: highly sensitive to retain Pb , Al and Cr ; moderately sensitive for Mn; and weakly sensitive for Band Zn. Data suggested that large fraction of Pb removed by phosphatic clays stayed intact under a wide variation in extracting solution pH (3-11). In situ immobilization is considered a promising technique that has the potential to remove contaminant ions from wastewater. Two important factors need to be considered when applying this technique: The first, is the clay must be effective and selective under different composition of wastewater. The second, is the immobilized ions should be stable and non-leacheable under varying water conditions. Phosphatic clays with $Pb^{2+}$ were suitable to achieve these two factors. Possible mechanism for removal $Pb^{2+}$ by phosphatic clays is the formation of fluoropyromorphite through the dissolution of fluoro and hydroxyl apatite by its precipitation from solution, beside, Pb complexation at phosphatic clay surface at P-OH sites.

  • PDF

Analysis of Lake Water Temperature and Seasonal Stratification in the Han River System from Time-Series of Landsat Images (Landsat 시계열 영상을 이용한 한강 수계 호수 수온과 계절적 성충 현상 분석)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.253-271
    • /
    • 2005
  • We have analyzed surface water temperature and seasonal stratification of lakes in the Han river system using time-series Landsat images and in situ measurement data. Using NASA equation, at-satellite temperature is derived from 29 Landsat-5 TM and Landsat-7 ETM+ images obtained from 1994 to 2004, and was compared with in situ surface temperature on river-type dam lakes such as Paro, Chuncheon, Euiam, Chongpyong, Paldang, and with 10m-depth temperature on lake-type dam lake Soyang. Although the in situ temperature at the time of satellite data acquisition was interpolated from monthly measurements, the number of images with standard deviation of temperature difference (at-satellite temperature - in situ interpolated temperature) less than $2^{\circ}C$ was 24 on which a novel statistical atmospheric correction could be applied. The correlation coefficient at Lake Soyang was 0.915 (0.950 after correction) and 0.951-0.980 (0.979-0.997 after correction) at other lakes. This high correlation implies that there exist a mixed layer in the shallow river-like dam lakes due to physical mixing from continuous influx and efflux, and the daily and hourly temperature change is not fluctuating. At Lake Soyang, an anomalous temperature difference was observed from April to July where at-satellite temperature is $3-5^{\circ}C$ higher than in situ interpolated temperature. Located in the uppermost part of the Han river system and its influx is governed only by natural precipitation, Lake Soyang develops stratification during this time with rising sun elevation and no physical mixture from influx in this relatively dry season of the year.

Preparation of Co-Ni Electrode by Precipitation Method and it's Application for Molten Carbonate Fuel Cell or Optimization of Co-Ni Electrode's Fabrication and it's Application for Molten Carbonate Fuel Cell (침전법을 활용한 Co-Ni 전극의 제조와 용융탄산염 연료전지의 그 적용)

  • Kim, S.Y.;Devianto, Hary;Ryu, B.H.;Hahm, H.C.;Han, J.;Yoon, S.P.;Nam, S.W.;Lim, T.H.;Lee, H.I.
    • New & Renewable Energy
    • /
    • v.4 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • In-situ lithiated NiO has been manufactured as a conventional cathode material of molten carbonate fuel cell (MCFC), however this material has a weakness for commercialization of MCFC because NiO is spontaneously dissolved into the electrolyte under MCFC operating conditions, resulting in short circuit between cathode and anode. In this research, therefore, $Co(OH)_2$-coated Ni powder was prepared by precipitation method with controlling pH at low temperature and atmospheric pressure. Modified cathode was fabricated by a conventional tape casting method and sintered at 700$^{\circ}C$ in a $H_2/N_2$ atmosphere, Based on characterization result, Pore size distribution and porosity was suitable for the cathode of MCFC. According to the result of dissolution, Ni solubility of modified cathode was 33% lower than that of conventional cathode. In addition, modified electrode showed a good performance from the single cell operation.

  • PDF

Rapid Climate Change During the Deglaciation of Lake Hovsgol, Mongolia

  • Chun, Jong-Hwa;Cheong, Dae-Kyo
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.2
    • /
    • pp.55-58
    • /
    • 2005
  • A 120-cm core recovered from Lake Hovsgol, the northern Mongolia provides evidence for climate variability since the Marine Isotope Stage 3, representing a sharp lithological change. The lowermost part of the core consists of diatom-barren calcareous silty clay without coarse sands, framboidal pyrite, and biogenic components deposited during the MIS 3. Following the last glacial maximum, in-situ moss is included in the sediments, as lake-level was retreated by cold and dry environment with low precipitation. The AMS radiocarbon ages of the plant fragments match a marked lithologic boundary between 14,060 and 14,325 $^{14}C$ yr BP. The contents of coarse sands abruptly increase, indicating probably wind-derived sandy dust or coarse grains contributed from floating icebergs. And abundant framboidal pyrite grains were deposited in an anoxic environment, as reflected by high accumulation of organic matters at a low lake stand. During the deglaciation, quantities of coarse sands, ostracod, shell fragments, framboidal pyrite, and diatom markedly varies by regional and global scale climate regimes. Some allochthonous coarse sands were probably ice-rafted debris derived from floating icebergs. A rapid increase in diatom productivity probably marked the onset of Bolling-Allerod warming. Subsequent high concentration of framboidal pyrite probably represents a dry and cold condition, such as Younger Drays events. Consistent warm period with high precipitation at Holocene is documented by diatomaceous clayey ooze without framboidal pyrite, coarse sands, and ostracod.

  • PDF