• Title/Summary/Keyword: In-role performance

Search Result 4,915, Processing Time 0.031 seconds

The Changes of Plasma Catecholamines Concentration during Waking and Sleep in Obstructive Sleep Apnea Syndrome Patients with Systemic Hypertension (전신성 고혈압을 동반한 폐쇄성 수면 무호흡증후군 환자에서 각성시와 수면중의 혈장 Catecholamines 농도 변화)

  • Moon, Hwa Sik;Lo, Dae Guen;Choi, Young Mee;Kim, Young Kyoon;Kim, Kwan Hyoung;Song, Jeong Sup;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.4
    • /
    • pp.600-612
    • /
    • 1996
  • Background : Recent studies deported that untreated patients with obstructive sleep apnea syndrome had high long-term mortality rates, and cardiovascular complications of these patients clad a major effect on mortality. Several data indicates that obstructive sheep apnea syndrome contributes to the development of diurnal systemic hypertension. But the pathophysiological mechanism of the development of systemic hypertension in these patients is still uncertain. This study was performed to evaluate the possible role of sympathetic nervous system activity for the development of systemic hypertension in patients with obstructive sleep apnea syndrome. Method : 35 patients with obstructive sleep apnea syndrome(OSAS) and 13 Control subjects(control) were included in this study. 21 patients of OSAS were normotensives(OSAS-NBP), and 14 patients of OSAS were hypertensives(OSAS-HBP). Full night polysomnography was undertaken to all subjects. We measured plasma norepinephrine(NE) and epinephrine(EP) concentrations during waking and sleep, using high performance liquid chromatography, in all patients and control subjects. Results : In OSAS, OSAS-NBP and control, plasma NE and EP concentrations during sleep were lowed than during waking(p<0.01). But, in OSAS-HBP, these was no difference between during waking and sleep. Plasma NE concentrations during sleep of OSAS, OSAS-NBP and OSAS-HBP were higher than Control(p<0.05). In OSAS-HBP, daytime systolic blood pressure correlated with plasma NE concentration during sleep(r=0.7415, p<0.01), arid correlated inversely with mean arterial oxygen saturation(r=-0.6465, p<0.05) or arterial oxygen saturation nadir(r=-0.6) 14, p<0.05) during sleep. Conclusion : The sympathetic activity during sleep of obstructive sleep apnea syndrome patients was higher than control subjects. In obstructive sleep apnea syndrome patients with systemic hypertension, there was no diurnal variation of sympathetic activity, and there was correlation between daytime systolic blood pressure and sympathetic activity during sleep. These data suggests that chronic hyperactivity of sympathetic nervous system may contribute to the development of diurnal systemic hypertension in patients with obstructive sleep apnea syndrome.

  • PDF

A study on the classification of research topics based on COVID-19 academic research using Topic modeling (토픽모델링을 활용한 COVID-19 학술 연구 기반 연구 주제 분류에 관한 연구)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.155-174
    • /
    • 2022
  • From January 2020 to October 2021, more than 500,000 academic studies related to COVID-19 (Coronavirus-2, a fatal respiratory syndrome) have been published. The rapid increase in the number of papers related to COVID-19 is putting time and technical constraints on healthcare professionals and policy makers to quickly find important research. Therefore, in this study, we propose a method of extracting useful information from text data of extensive literature using LDA and Word2vec algorithm. Papers related to keywords to be searched were extracted from papers related to COVID-19, and detailed topics were identified. The data used the CORD-19 data set on Kaggle, a free academic resource prepared by major research groups and the White House to respond to the COVID-19 pandemic, updated weekly. The research methods are divided into two main categories. First, 41,062 articles were collected through data filtering and pre-processing of the abstracts of 47,110 academic papers including full text. For this purpose, the number of publications related to COVID-19 by year was analyzed through exploratory data analysis using a Python program, and the top 10 journals under active research were identified. LDA and Word2vec algorithm were used to derive research topics related to COVID-19, and after analyzing related words, similarity was measured. Second, papers containing 'vaccine' and 'treatment' were extracted from among the topics derived from all papers, and a total of 4,555 papers related to 'vaccine' and 5,971 papers related to 'treatment' were extracted. did For each collected paper, detailed topics were analyzed using LDA and Word2vec algorithms, and a clustering method through PCA dimension reduction was applied to visualize groups of papers with similar themes using the t-SNE algorithm. A noteworthy point from the results of this study is that the topics that were not derived from the topics derived for all papers being researched in relation to COVID-19 (

    ) were the topic modeling results for each research topic (
    ) was found to be derived from For example, as a result of topic modeling for papers related to 'vaccine', a new topic titled Topic 05 'neutralizing antibodies' was extracted. A neutralizing antibody is an antibody that protects cells from infection when a virus enters the body, and is said to play an important role in the production of therapeutic agents and vaccine development. In addition, as a result of extracting topics from papers related to 'treatment', a new topic called Topic 05 'cytokine' was discovered. A cytokine storm is when the immune cells of our body do not defend against attacks, but attack normal cells. Hidden topics that could not be found for the entire thesis were classified according to keywords, and topic modeling was performed to find detailed topics. In this study, we proposed a method of extracting topics from a large amount of literature using the LDA algorithm and extracting similar words using the Skip-gram method that predicts the similar words as the central word among the Word2vec models. The combination of the LDA model and the Word2vec model tried to show better performance by identifying the relationship between the document and the LDA subject and the relationship between the Word2vec document. In addition, as a clustering method through PCA dimension reduction, a method for intuitively classifying documents by using the t-SNE technique to classify documents with similar themes and forming groups into a structured organization of documents was presented. In a situation where the efforts of many researchers to overcome COVID-19 cannot keep up with the rapid publication of academic papers related to COVID-19, it will reduce the precious time and effort of healthcare professionals and policy makers, and rapidly gain new insights. We hope to help you get It is also expected to be used as basic data for researchers to explore new research directions.

  • Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

    • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
      • Journal of Intelligence and Information Systems
      • /
      • v.26 no.4
      • /
      • pp.127-148
      • /
      • 2020
    • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

    A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

    • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
      • Journal of Intelligence and Information Systems
      • /
      • v.24 no.3
      • /
      • pp.67-88
      • /
      • 2018
    • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

    A Study on Perceived Quality affecting the Service Personal Value in the On-off line Channel - Focusing on the moderate effect of the need for cognition - (온.오프라인 채널에서 지각된 품질이 서비스의 개인가치에 미치는 영향에 관한 연구 -인지욕구의 조정효과를 중심으로-)

    • Sung, Hyung-Suk
      • Journal of Distribution Research
      • /
      • v.15 no.3
      • /
      • pp.111-137
      • /
      • 2010
    • The basic purpose of this study is to investigate perceived quality and service personal value affecting the result of long-term relationship between service buyers and suppliers. This research presented a constructive model(perceived quality affecting the service personal value and the moderate effect of NFC) in the on off line and then propose the research model base on prior researches and studies about relationships among components of service. Data were gathered from respondents who visit at the education service market. For this study, Data were analyzed by AMOS 7.0. We integrate the literature on services marketing with researches on personal values and perceived quality. The SERPVAL scale presented here allows for the creation of a common ground for assessing service personal values, giving a clear understanding of the key value dimensions behind service choice and usage. It will lead to a focus of future research in services marketing, extending knowledge in the field and stimulating further empirical research on service personal values. At the managerial level, as a tool the SERPVAL scale should allow practitioners to evaluate and improve the value of a service, and consequently, to define strategies and actions to address services for customers based on their fundamental personal values. Through qualitative and empirical research, we find that the service quality construct conforms to the structure of a second-order factor model that ties service quality perceptions to distinct and actionable dimensions: outcome, interaction, and environmental quality. In turn, each has two subdimensions that define the basis of service quality perceptions. The authors further suggest that for each of these subdimensions to contribute to improved service quality perceptions, the quality received by consumers must be perceived to be reliable, responsive, and empathetic. Although the service personal value may be found in researches that explore individual values and their consequences for consumer behavior, there is no established operationalization of a SERPVAL scale. The inexistence of an established scale, duly adapted in order to understand and analyze personal values behind services usage, exposes the need of a measurement scale with such a purpose. This need has to be rooted, however, in a conceptualization of the construct being scaled. Service personal values can be defined as a customer's overall assessment of the use of a service based on the perception of what is achieved in terms of his own personal values. As consumer behaviors serve to show an individual's values, the use of a service can also be a way to fulfill and demonstrate consumers'personal values. In this sense, a service can provide more to the customer than its concrete and abstract attributes at both the attribute and the quality levels, and more than its functional consequences at the value level. Both values and services literatures agree, that personal value is the highest-level concept, followed by instrumental values, attitudes and finally by product attributes. Purchasing behaviors are agreed to be the end result of these concepts' interaction, with personal values taking a major role in the final decision process. From both consumers' and practitioners' perspectives, values are extremely relevant, as they are desirable goals that serve as guiding principles in people's lives. While building on previous research, we propose to assess service personal values through three broad groups of individual dimensions; at the self-oriented level, we use (1) service value to peaceful life (SVPL) and, at the social-oriented level, we use (2) service value to social recognition (SVSR), and (3) service value to social integration (SVSI). Service value to peaceful life is our first dimension. This dimension emerged as a combination of values coming from the RVS scale, a scale built specifically to assess general individual values. If a service promotes a pleasurable life, brings or improves tranquility, safety and harmony, then its user recognizes the value of this service. Generally, this service can improve the user's pleasure of life, since it protects or defends the consumer from threats to life or pressures on it. While building upon both the LOV scale, a scale built specifically to assess consumer values, and the RVS scale for individual values, we develop the other two dimensions: SVSR and SVSI. The roles of social recognition and social integration to improve service personal value have been seriously neglected. Social recognition derives its outcome utility from its predictive utility. When applying this underlying belief to our second dimension, SVSR, we assume that people use a service while taking into consideration the content of what is delivered. Individuals consider whether the service aids in gaining respect from others, social recognition and status, as well as whether it allows achieving a more fulfilled and stimulating life, which might then be revealed to others. People also tend to engage in behavior that receives social recognition and to avoid behavior that leads to social disapproval, and this contributes to an individual's social integration. This leads us to the third dimension, SVSI, which is based on the fact that if the consumer perceives that a service strengthens friendships, provides the possibility of becoming more integrated in the group, or promotes better relationships at the social, professional or family levels, then the service will contribute to social integration, and naturally the individual will recognize personal value in the service. Most of the research in business values deals with individual values. However, to our knowledge, no study has dealt with assessing overall personal values as well as their dimensions in a service context. Our final results show that the scales adapted from the Schwartz list were excluded. A possible explanation is that although Schwartz builds on Rokeach work in order to explore individual values, its dimensions might be especially focused on analyzing societal values. As we are looking for individual dimensions, this might explain why the values inspired by the Schwartz list were excluded from the model. The hierarchical structure of the final scale presented in this paper also presents theoretical implications. Although we cannot claim to definitively capture the dimensions of service personal values, we believe that we come close to capturing these overall evaluations because the second-order factor extracts the underlying commonality among dimensions. In addition to obtaining respondents' evaluations of the dimensions, the second-order factor model captures the common variance among these dimensions, reflecting the respondents' overall assessment of service personal values. Towards this fact, we expect that the service personal values conceptualization and measurement scale presented here contributes to both business values literature and the service marketing field, allowing for the delineation of strategies for adding value to services. This new scale also presents managerial implications. The SERPVAL dimensions give some guidance on how to better pursue a highly service-oriented business strategy. Indeed, the SERPVAL scale can be used for benchmarking purposes, as this scale can be used to identify whether or not a firms' marketing strategies are consistent with consumers' expectations. Managerial assessment of the personal values of a service might be extremely important because it allows managers to better understand what customers want or value. Thus, this scale allows us to identify what services are really valuable to the final consumer; providing knowledge for making choices regarding which services to include. Traditional approaches have focused their attention on service attributes (as quality) and service consequences(as service value), but personal values may be an important set of variables to be considered in understanding what attracts consumers to a certain service. By using the SERPVAL scale to assess the personal values associated with a services usage, managers may better understand the reasons behind services' usage, so that they may handle them more efficiently. While testing nomological validity, our empirical findings demonstrate that the three SERPVAL dimensions are positively and significantly associated with satisfaction. Additionally, while service value to social integration is related only with loyalty, service value to peaceful life is associated with both loyalty and repurchase intent. It is also interesting and surprising that service value to social recognition appears not to be significantly linked with loyalty and repurchase intent. A possible explanation is that no mobile service provider has yet emerged in the market as a luxury provider. All of the Portuguese providers are still trying to capture market share by means of low-end pricing. This research has implications for consumers as well. As more companies seek to build relationships with their customers, consumers are easily able to examine whether these relationships provide real value or not to their own lives. The selection of a strategy for a particular service depends on its customers' personal values. Being highly customer-oriented means having a strong commitment to customers, trying to create customer value and understanding customer needs. Enhancing service distinctiveness in order to provide a peaceful life, increase social recognition and gain a better social integration are all possible strategies that companies may pursue, but the one to pursue depends on the outstanding personal values held by the service customers. Data were gathered from 284 respondents in the korean discount store and online shopping mall market. This research proposed 3 hypotheses on 6 latent variables and tested through structural equation modeling. 6 alternative measurements were compared through statistical significance test of the 6 paths of research model and the overall fitting level of structural equation model. and the result was successful. and Perceived quality more positively influences service personal value when NFC is high than when no NFC is low in the off-line market. The results of the study indicate that service quality is properly modeled as an antecedent of service personal value. We consider the research and managerial implications of the study and its limitations. In sum, by knowing the dimensions a consumer takes into account when choosing a service, a better understanding of purchasing behaviors may be realized, guiding managers toward customers expectations. By defining strategies and actions that address potential problems with the service personal values, managers might ultimately influence their firm's performance. we expect to contribute to both business values and service marketing literatures through the development of the service personal value. At a time when marketing researchers are challenged to provide research with practical implications, it is also believed that this framework may be used by managers to pursue service-oriented business strategies while taking into consideration what customers value.

    • PDF

    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.