• 제목/요약/키워드: In-plane combined load

검색결과 70건 처리시간 0.022초

무효전력보상장치 설치가 900 MW 복합화력발전소의 성능향상에 미치는 효과 (Effect of the Reactive Power Compensation System on Performance Enhancement in a 900 MW Combined Cycle Power Plant)

  • 이영옥;유호선
    • 플랜트 저널
    • /
    • 제17권2호
    • /
    • pp.48-53
    • /
    • 2021
  • 900 MW 복합화력발전소의 경우 소내 부하의 대부분은 회전기기이며 저역률로 운전되고 있고 역률 저하는 무효전력을 증가시켜 기기의 효율 저하 및 불필요한 소내 전력을 소비하는 원인이 된다. 본 연구에서는 이러한 문제점을 해결할 수 있는 방안인 무효전력을 흡수 및 제거하는 무효전력보상장치를 6.9 kV 소내 모선에 설치하여 운전함으로써 그에 대한 결과를 제시하고자 한다. 본 시스템의 적용 결과 우선 회전기기의 역률이 0.22로 개선 및 소내 부하전력량 1.4% 감소됨을 확인하였고 발전기 열효율 0.1%, 발전출력810 kW 증가함을 알 수 있었다. 다음으로 투자비 1.5억 원 대비 소내 전력손실비용 2억 원/년 감소 및 매출액 10억 원/년 증가로 경제성 있음으로 분석되었고 향후 건설 및 운영 시 비용절감이 가능함을 확인하였다.

압전재료 내의 균열에 대한 그린함수 (Green's Function of Cracks in Piezoelectric Material)

  • 최성렬
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.967-974
    • /
    • 2007
  • A general form solution is considered for a piezoelectric material containing impermeable cracks subjected to a combined mechanical and in-plane electrical loading. The analysis is based upon the Hilbert problem formulation. Using this solution, typically for a central crack in transverse isotropic piezoelectric material, a closed form solution is obtained, where one concentrated mechanical and electrical load is subjected to the crack surface. This problem could be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

고속 시스템에서의 PCB 선로의 SPICE 모델 (SPICE models of PCB traces in high-speed systems)

  • 남상식;손진우;강석열;김석윤
    • 한국통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.12-20
    • /
    • 1997
  • Physical interconnect such as Printed Circuit Board(PCB) traces introduces new challenges for parameter extraction and delay calculation for high-speed system design. PCB traces are dominated by frequency dependent LC propagation which makes precharacterization difficult for all possible configurations. Moreover, simulating the transient behavior of the trace for noise and delay analysis requries the combined used of a variety of models and techniques for efficiently handling lossy, low-loss, frequency dependent, and coupled transmission lines together with lumped elements. In this paper we explain how the frequency dependence caused by ground plane proximity and skin effects can be modeled using the adstracted models. These abstracted (lumped) models are SPICE-compatible and can be simulated in time-domain, along with precharacterized lumped parasitic elements and nonlinear driver and load models.

  • PDF

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao;Peng, Wenjie;Ge, Rui;Wei, Junhong
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.407-421
    • /
    • 2009
  • The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

감육엘보 실증실험에서의 탄성 및 소성 한계하중 거동 고찰 (Behavior of Elastic and Plastic Limit Loads of Thinned Elbows Observed During Real-Scale Failure Test Under Combined Load)

  • 이성호;이정근;박치용
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1293-1298
    • /
    • 2010
  • 본 연구에서는 인공감육엘보에 대해 내압 및 굽힘의 복합하중을 작용시킨 실 배관 실증실험으로부터 생성한 회전각 대비 모멘트 곡선으로부터 감육결함 엘보에서 소성변형이 시작되는 1 배탄성구배법에 기초한 OES 탄성하중과 2 배탄성구배법에 기초한 TES 소성하중의 거동 및 상관관계를 살펴보았다. ASME 에서도 제시하고 있는 TES 소성하중은 균열손상에 따른 배관계통 구조 건전성 상실을 배제하면서도 지속사용을 허용할 수 있는 대체 관리 기준으로서 적합한 것으로 판단된다.

보강된 복합적층 판넬의 좌굴 및 좌굴후 거동 연구 (Buckling and Postbuckling Behavior of Stiffened Laminated Composite Panels)

  • 이인철;경우민;공철원;홍창선;김천곤
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3199-3210
    • /
    • 1996
  • The buckling and postbuckling behaviors were sutdied analytically and experimentally for stiffened laminated composite panels under compression loading. The panels with I-, blade, -and hat-shapeed stiffeners were investigated. In the analysis, the stiffened panels were anlyzed using the nonlinear finite element method combined with an improved arc-length method. The progressive failure analysis was done by adopting the maximum stress criterion and complete unloading failure model. The effects of the fiber angles were investigated on the buckling and postbuckling behaviors. In the experiment, the web and the lower cap of each stiffener were formed by the continuous lay-up of the skin for cocuring the stiffened panels. Therefore, the separation between stiffener and skin was not found in the junction part even after postbuckling ultimate load and the stiffened panels had excellent postbuckling load carrying capacity. A shadow moire thchnique was used to monitor the out-of-plane deformations of the panels. The piezoelectric films were attached to the panels to get the failure characteristics of the panel. The analytical results on the buckling load, postbuckling ultimate load, and failure pattern showed good agreement with the experimental results.

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.

항공기 Bulkhead 체결구조의 균열 원인 및 개선에 관한 연구 (A Study on the Cause and Improvement of Crack in the Installing Structure of the Bulkhead of Aircraft)

  • 최형준;박성제
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.448-454
    • /
    • 2020
  • 본 연구는 항공기 운용 중 발생하는 구조결함의 원인을 규명하고 개선형상에 대한 구조 건전성을 확인하고자 한다. 항공기 균열은 Bulkhead 체결구조로서 연료탱크 경계 Web 파열로 인한 연료누유 현상에서 식별되었다. 균열의 특성을 확인하기 위해 파단면을 분석하였고 반복하중에 의해 균열이 진전되어 최종 파단으로 이어지는 피로파괴로 판단하였다. 또한 다중 시작점에서 균열이 시작되는 것으로 소재의 결함이 균열의 주요 원인으로 판단되지 않는다. 항공기 운용 중 발생하는 기동하중에 대한 균열 영향을 확인하기 위해 항공기 지상 및 비행시험을 통해 분석을 수행하였다. 항공기 운용 중 균열 부위의 하중 측정 데이터와 항공기 설계하중과의 비교를 통한 분석 결과 측정하중은 설계 대비 30% 수준으로 파손을 유발할 수준은 아니라고 판단하였다. 항공기 운용 시 진동하중의 원인으로 조립 및 단품 제작공차가 최대 0.06inch 발생할 수 있는 Gap을 검토하였고, 분석결과 균열부위에서 큰 응력인 약 32ksi가 발생하였다. 또한 Pre-Load에 의해 M.S.(Margin of Safety)가 +0.71에서 +0.34로 약 50%이상 감소되는 것으로 확인되어 항공기 설계 하중과 조합 시 균열 가능성이 급격히 증가하였다. 따라서 항공기 균열부위에 대하여 구조 보강 및 Gap 제거를 통해 결함을 개선하였다. 개선형상에 대하여 구조강도 해석 결과 Bulkhead는 허용응력 대비 M.S.가 약 +0.88이고 Fitting 형상은 약 +0.48로서 충분한 마진이 확보되었다. 또한 수명해석 결과 형상 개선 전 수명인 약3,600 시간 대비 개선형상은 약84,000 시간으로서 항공기 설계수명 대비 구조건전성을 확인하였다.

Advanced analysis of cyclic behaviour of plane steel frames with semi-rigid connections

  • Saravanan, M.;Arul Jayachandran, S.;Marimuthu, V.;Prabha, P.
    • Steel and Composite Structures
    • /
    • 제9권4호
    • /
    • pp.381-395
    • /
    • 2009
  • This paper presents the details of an advanced Finite Element (FE) analysis of a plane steel portal frame with semi-rigid beam-to-column connections subjected cyclic loading. In spite of several component models on cyclic behaviour of connections presented in the literature, works on numerical investigations on cyclic behaviour of full scale frames are rather scarce. This paper presents the evolution of an FE model which deals comprehensively with the issues related to cyclic behaviour of full scale steel frames using ABAQUS software. In the material modeling, combined kinematic/isotropic hardening model and isotropic hardening model along with Von Mises criteria are used. Connection non-linearity is also considered in the analysis. The bolt slip which happens in friction grip connection is modeled. The bolt load variation during loading, which is a pivotal issue in reality, has been taken care in the present model. This aspect, according to the knowledge of the authors, has been first time reported in the literature. The numerically predicted results using the methodology evolved in the present study, for the cyclic behaviour of a cantilever beam and a rigid frame, are validated with experimental results available in the literature. The moment-rotation and deflection responses of the evolved model, match well with experimental results. This proves that the methodology for evolving the steel frame and connection model presented in this paper is closer to real frame behaviour as evident from the good comparison and hence paves the way for further parametric studies on cyclic behaviour of flexibly connected frames.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.