• Title/Summary/Keyword: In-plane and Out-of-plane loads

Search Result 137, Processing Time 0.024 seconds

A Study for Remained Efficiency of Correction Heating after Block Lifting (블록 리프팅 후 갑판 교정가열의 잔존 효율 연구)

  • Ha, Yun-Sok;Won, Seok-Hee;Yi, Myung-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.118-125
    • /
    • 2008
  • The deck plates of ship block is made of thin plates in their construction. A main reason of using thin plates is that deck plates don't need to support large structural loads. Therefore, out-of-plane deformations between stiffeners are frequent in deck blocks. Because these are got right by correction heating, they continuously causes quality problems in the final dock-building process. According to preceding research, the lifting process by cranes would offset the effect of correction heating. This study finds out the remained efficiency of correction heating when tensional loads are added by a lifting to corrected parts. We used inherent strains in calculating the efficiency, and established the methodology where the positions for callings are. For getting more accurate positions, besides the structural lifting analysis, welding deformation analysis with upper block and measured data from a serial ship are also referenced.

  • PDF

Load-carrying capacities and failure modes of scaffold-shoring systems, Part I: Modeling and experiments

  • Huang, Y.L.;Chen, H.J.;Rosowsky, D.V.;Kao, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.53-66
    • /
    • 2000
  • This paper proposes a simple numerical model for use in a finite analysis (FEA) of scaffold-shoring systems. The structural model consists of a single set of multiple-story scaffolds with constraints in the out-of-plane direction at every connection joint between stories. Although this model has only two dimensions (termed the 2-D model), it is derived from the analysis of a complete scaffold-shoring system and represents the structural behavior of a complete three-dimensional system. Experimental testing of scaffolds up to three stories in height conducted in the laboratory, along with an outdoor test of a five-story scaffold system, were used to validate the 2-D model. Both failure modes and critical loads were compared. In the comparison of failure modes, the computational results agree very well with the test results. However, in the comparison of critical loads, computational results were consistently somewhat greater than test results. The decreasing trends of critical loads with number of stories in both the test and simulation results were similar. After investigations to explain the differences between the computationally and experimentally determined critical loads, it was recommended that the 2-D model be used as the numerical model in subsequent analysis. In addition, the computational critical loads were calibrated and revised in accordance with the experimental critical loads, and the revised critical loads were then used as load-carrying capacities for scaffold-shoring systems for any number of stories. Finally, a simple procedure is suggested for determining load-carrying capacities of scaffold-shoring systems of heights other than those considered in this study.

A Study on the Forging of Internal Involute Gears with Alloy Steel (합금강을 이용한 내접 인벌류우트 기어의 단조에 관한 연구)

  • 최종웅;조해용;최재찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.90-98
    • /
    • 1998
  • Forging of internal involute gears with alloy steel has been analyzed by means of upper bound method. Kinematically admissible velocity fields for forging of internal gear were proposed. It was assumed that the shape of free flow surface during forging operation is a straight line perpendicular to the plane of symmetry. Using the suggested velocity fields, forging loads and relative pressures were calculated by numerical method. Consequently forging die should be successfully designed without fracture or failure during forging operation. Experiments were carried out with the designed die and SCM415 alloy steel as billet material. The calculated loads were compared with experimental one and they are in good agreement with experimental inspections. As a result, the calculated solutions would be useful to predict the loads and the designed die is suitable for forging of internal involute spur gear with alloy steel. The forged gear is measured to be KS 4 class and its class should be improved by subsequent working such as shaving after forging operation.

  • PDF

A Study on the Stability of Anisotropic Circular Conical Shells (비등방성 원뿔형 쉘의 안정성에 관한 연구)

  • 박원태;손병직
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.128-133
    • /
    • 2001
  • In this paper, stability analysis is carried out far the out of plane behaviors under compressive loads to the conical direction. It is not easy to obtain the analytic solutions about the stability analysis of anisotropic conical shells consisted of composite materials. For solving this problems, this paper used the finite difference method which is one of the numerical methods. The characteristics of the buckling behaviors of anisotropic laminated composite conical shells may be different according to a variety of causes, that is, the change of fiber angle, material arrangement, radius ratio, shape ratio and so on. The objective of this study is to analyze buckling behaviors of circular conical shells with shear deformation effects and to prove the advantage of composite materials.

  • PDF

A Study on the Stability of Anisotropic Cylindrical Shells (비등방성 원통형 쉘의 안정성에 관한 연구)

  • Park, Keun Woo;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.187-196
    • /
    • 2000
  • In this paper, stability analysis is carried out for the out of plane behaviors under compressive loads to the direction of the generator in anisotropic cylindrical shells. It is not easy to obtain the analytic solutions about the stability analysis of anisotropic cylindrical shells consisted of composite materials. For solving this problems, this paper used the finite difference method which is one of the numerical methods. Geometrical property of cylindrical shells transforms the compressive loads into the inplane behaviors. This paper studied the change of stiffness in the direction of the circumferential and stability of shells according to change of fiber angle, curvature, subtended angle and aspect ratio. From result of this study, anisotropic cylindrical shells under compressive loads to the direction of the generator vary greatly with respect to the change of the circumferential stiffness. Therefore, it will be more safe to strengthen the circumferential stiffness of anisotropic cylindrical shells under compressive loads.

  • PDF

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Moment resisting steel frames under repeated earthquakes

  • Loulelis, D.;Hatzigeorgiou, G.D.;Beskos, D.E.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.231-248
    • /
    • 2012
  • In this study, a systematic investigation is carried out on the seismic behaviour of plane moment resisting steel frames (MRF) to repeated strong ground motions. Such a sequence of earthquakes results in a significant damage accumulation in a structure because any rehabilitation action between any two successive seismic motions cannot be practically materialised due to lack of time. In this work, thirty-six MRF which have been designed for seismic and vertical loads according to European codes are first subjected to five real seismic sequences which are recorded at the same station, in the same direction and in a short period of time, up to three days. Furthermore, the examined frames are also subjected to sixty artificial seismic sequences. This investigation shows that the sequences of ground motions have a significant effect on the response and, hence, on the design of MRF. Additionally, it is concluded that ductility demands, behaviour factor and seismic damage of the repeated ground motions can be satisfactorily estimated using appropriate combinations of the corresponding demands of single ground motions.

Numerical investigation of the buckling behavior of thin ferrocement stiffened plates

  • Koukouselis, Apostolos;Mistakidis, Euripidis
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.391-410
    • /
    • 2015
  • One of the most common applications of ferrocement is the manufacturing of thin stiffened plates which are prone to buckling. This study focuses on the investigation of the behavior of a ferrocement plate, stiffened in both directions by means of an appropriate grid of ribs. In the present paper detailed three-dimensional numerical Finite Element models are formulated for the simulation of the behavior of the structure under study, which are able to take into account both the geometric and material non-linearities that are present in the subject at hand (plasticity, cracking, large displacements). The difference among the formulated models lies on the use of different types of finite elements. The numerical results obtained by each model are compared and the most efficient model is determined. Finally, this model is in the sequel used for the further investigation of the effect of different parameters on the ultimate load capacity, such as the initial out-of-plane imperfection of the plate and the interaction between the axial loads in both directions.

Mathieu stability of offshore Buoyant Leg Storage & Regasification Platform

  • Chandrasekaran, S.;Kiran, P.A.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.345-360
    • /
    • 2018
  • Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the severity of instability.

Optimization of slope angles of a barge-shaped FPSO from the towing stability and load perspective

  • Kwon, Chang Seop;Yeon, Seong Mo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.786-793
    • /
    • 2021
  • In this study, a parametric investigation is performed using CFD for towing stability and loads according to the forward and aft slope angles of a barge-shaped FPSO. The forward slope angle is considered in a range of 30-60° and the aft slope is examined in a range of 20-50°. As a result of a comparative study based on CFD towing simulations, it is found that the yaw motion is damped out and stabilized when the aft slope is more than 40° regardless of the forward slope angle. The vortex contours in the y-axis plane near the aft slope are analyzed and it is observed that the vortex developed at the bottom knuckle is bent upward along the aft slope when the aft slope is less than 40°, and completely fallen from the bottom knuckle when the aft slope is more than 40°. Based on the results, a guide to forward and aft slope angles of a barge-shaped FPSO is presented from a practical point of view considering towing stability as well as towing load.