• 제목/요약/키워드: In-pipe inspection robot

검색결과 29건 처리시간 0.031초

카메라와 다중 레이저를 이용한 배관 탐사 로봇 기구의 적용성 평가 (Evaluation on the Application of In-Pipe Inspection Robot with Multiple Lasers and Cameras)

  • 남문호;박성욱;백승해;박순용;김창회;김승호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1780-1781
    • /
    • 2011
  • There have been numerous studies on application of robots to in-pipe inspection system. In this thesis, a mobile robot that can move through elbows and vertical pipes having diameter 100mm is developed. Defect detection technology for locating wall-thinnings, corrosions and foreign materials is developed for high temperature and pressure pipings in thermal power plants, utilizing laser sensors installed on the robot. Actual defect detection performance is evaluated with application of the developed robot system to a mock-up pipings.

  • PDF

리니어 구동 구조의 마찰 저감을 위한 수동형 성장 피복 (A Passively Growing Sheath for Reducing Friction of Linearly Moving Structures)

  • 서한범;김동기;정광필
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.159-163
    • /
    • 2022
  • A linearly moving structure in the area where the friction force is dominant - such as ducts filled with grease in the nuclear power plant - experiences increase in friction since the contact surface gets larger as the structure proceeds. To solve this problem is critical for the pipe inspection robot to investigate further area and this makes the system more energy-efficient. In this paper, we propose a passively growing sheath that can be added to linearly moving structures using zipper mechanism. The mechanism enables the linearly moving structures to maintain rolling contact condition against external environment, which provides substantial reduction in kinetic friction. To analyze the effect of the mechanism's head shape, we establish a physical model and compare to the experimental results. Finally, we have shown that the passively growing sheath can be successfully applied to the pipe inspection robot for the nuclear power plant.

파이프 내부검사를 위한 이동로봇의 유도방법 (Guidance of Mobile Robot for Inspection of Pipe)

  • 정규원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

Pattern Analyses for Semi-Looper Type Robots with Multiple Links

  • Watanabe, Keigo;Liu, Guang Lei;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.963-968
    • /
    • 2005
  • For worm robots applied to pipe inspection and colonoscopy, earthworm-like robots that have a locomotion pattern in backward wave or green caterpillar-like robots that have a locomotion pattern in forward wave have been studied widely. Note however that a method using a single and fixed locomotion pattern is not desirable in the sense of mobility cost, if there are various changes in pipe diameter. In this paper, locomotion patterns are considered for a semi-looper-like robot, which adopts a locomotion pattern of green caterpillars as the basic motion and sometimes can realize a locomotion pattern of looper, whose motion approximately consists of two rhythms or relatively low rhythm.

  • PDF

증기발생기전열관의 검사정비로봇용 엔드이펙터의 범용 제어시스템 개발 (A development of a general purposed control system of robot end-effector for inspection and maintenance of steam generator heat pipe)

  • 박기태;김선진;노태정
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.33-38
    • /
    • 2013
  • 여러 종류의 증기발생기 검사정비 로봇의 엔드이펙터 모션 구동에 전부 사용할 수 있도록 ARM Cotex M3-107 MCU 기반의 제어기와 엔드이펙터 모션 프로그램 생성 응용소프트웨어로 구성된 범용 엔드이펙터 모션구동 제어시스템을 개발하였다. 범용 제어시스템을 적용하여 엔드이펙터의 직선이송 및 회전이송의 위치 결정의 오차는 무시할만한 수준이며, 재현성은 0.04% 오차를 보여줌으로써 실제로 사용 가능한 범용 엔드이펙터 모션구동 제어시스템을 개발하였다.

관로 청소 로봇의 최적 설계 (Optimal Mechanism Design of In-pipe Cleaning Robot)

  • 정창두;정원지;안진수;신기수;권순재
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.123-129
    • /
    • 2012
  • Recently, interests on cleaning robots workable in pipes (termed as in-pipe cleaning robot) are increasing because Garbage Automatic Collection Facilities (i.e, GACF) are widely being installed in Seoul metropolitan area of Korea. So far research on in-pipe robot has been focused on inspection rather than cleaning. In GACF, when garbage is moving, the impurities which are stuck to the inner face of the pipe are removed (diameter: 300 mm or 400 mm). Thus, in this paper, by using TRIZ (Inventive Theory of Problem Solving in Russian abbreviation), an in-pipe cleaning robot of GACF with the 6-link sliding mechanism will be proposed, which can be adjusted to fit into the inner face of pipe using pneumatic pressure(not spring). The proposed in-pipe cleaning robot for GACF can have forward/backward movement itself as well as rotation of brush in cleaning. The robot body should have the limited size suitable for the smaller pipe with diameter of 300 mm. In addition, for the pipe with diameter of 400 mm, the links of robot should stretch to fit into the diameter of the pipe by using the sliding mechanism. Based on the conceptual design using TRIZ, we will set up the initial design of the robot in collaboration with a field engineer of Robot Valley, Inc. in Korea. For the optimal design of in-pipe cleaning robot, the maximum impulsive force of collision between the robot and the inner face of pipe is simulated by using RecurDyn(R) when the link of sliding mechanism is stretched to fit into the 400 mm diameter of the pipe. The stresses exerted on the 6 links of sliding mechanism by the maximum impulsive force will be simulated by using ANSYS$^{(R)}$ Workbench based on the Design Of Experiment(in short DOE). Finally the optimal dimensions including thicknesses of 4 links will be decided in order to have the best safety factor as 2 in this paper as well as having the minimum mass of 4 links. It will be verified that the optimal design of 4 links has the best safety factor close to 2 as well as having the minimum mass of 4 links, compared with the initial design performed by the expert of Robot Valley, Inc. In addition, the prototype of in-pipe cleaning robot will be stated with further research.

파이프 구조물 검사를 위한 파이프 등반 로봇의 장애물 회피 제어 연구 (A Study on the Obstacle Avoidance Control of Pipe Climbing Robot for Pipe Structure Inspection)

  • 이스라엘;이성욱;박종원
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.167-173
    • /
    • 2020
  • 원자력발전소와 석유화학의 노후화된 파이프 구조물을 검사를 위하여 파이프 등반 로봇에 많은 연구가 이루어졌다. 그러나 파이프 등반 로봇 연구에서는 대부분 파이프 등반 로봇의 구조 설계와 기본적인 동작 제어에 초점을 맞추고 제작되어, 작업자가 파이프 등반 로봇을 제어하기 위해서는 수동 조작으로 파이프를 등반 및 장애물 회피하기 위해 많은 어려움을 가진다. 본 논문에서는 파이프 등반 로봇의 카메라 영상을 이용하여 장애물을 인식하고 파이프 등반 로봇과 장애물 사이의 거리를 추정 및 파이프 등반 로봇이 파이프를 잡을 수 있는 위치를 결정하여 파이프 사이의 장애물을 회피 할 수 있는 알고리즘을 제안한다.

Robot Posture Estimation Using Inner-Pipe Image

  • Sup, Yoon-Ji;Sok, Kang-E
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.173.1-173
    • /
    • 2001
  • This paper proposes the methodology in image processing algorithm that estimates the pose of the pipe crawling robot. The pipe crawling robots are usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light varies with the robot posture. The algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

  • PDF