• 제목/요약/키워드: In-pile Data

검색결과 314건 처리시간 0.023초

자력검층을 이용한 파일 심도 예측 (Pile Depth Prediction by Magnetic Logging)

  • 김진후
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.231-236
    • /
    • 2000
  • In order to predict depth of the pile forward modeling and inversion of magnetic logging data was conducted by using a finite line of dipoles model. The horizontal component as well as the vertical component of magnetic fields can be measured in the borehole, and the magnetic anomalies can be obtained by subtracting the Earth's magnetic field from the measurement. The magnetic anomalies of the pile are considered as vector sum of induced magnetization due to the Earth's magnetic field and remnant magnetization possessed by steel strings in the pile. The magnetic anomalies are used as input data for inversion from which the length, the magnetic moment per unit length, and the dip angle of the pile can be obtained. From the inversion of synthetic noisy data, and the data obtained from the field model test it is found that the driving depth of the pile can be determined as close to the order of measuring interval (5∼10㎝). It is also found that the resultant magnetic anomalies due to an individual steel string in the pile are almost same as those due to a group of steel strings located at the center of the pile. The magnetic logging method also can be used for locating reinforced bars, pipes, and steel casings.

  • PDF

Proposing new models to predict pile set-up in cohesive soils

  • Sara Banaei Moghadam;Mohammadreza Khanmohammadi
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.231-242
    • /
    • 2023
  • This paper represents a comparative study in which Gene Expression Programming (GEP), Group Method of Data Handling (GMDH), and multiple linear regressions (MLR) were utilized to derive new equations for the prediction of time-dependent bearing capacity of pile foundations driven in cohesive soil, technically called pile set-up. This term means that many piles which are installed in cohesive soil experience a noticeable increase in bearing capacity after a specific time. Results of researches indicate that side resistance encounters more increase than toe resistance. The main reason leading to pile setup in saturated soil has been found to be the dissipation of excess pore water pressure generated in the process of pile installation, while in unsaturated conditions aging is the major justification. In this study, a comprehensive dataset containing information about 169 test piles was obtained from literature reviews used to develop the models. to prepare the data for further developments using intelligent algorithms, Data mining techniques were performed as a fundamental stage of the study. To verify the models, the data were randomly divided into training and testing datasets. The most striking difference between this study and the previous researches is that the dataset used in this study includes different piles driven in soil with varied geotechnical characterization; therefore, the proposed equations are more generalizable. According to the evaluation criteria, GEP was found to be the most effective method to predict set-up among the other approaches developed earlier for the pertinent research.

Development of an integrated Web-based system with a pile load test database and pre-analyzed data

  • Chen, Yit-Jin;Liao, Ming-Ru;Lin, Shiu-Shin;Huang, Jen-Kai;Marcos, Maria Cecilia M.
    • Geomechanics and Engineering
    • /
    • 제7권1호
    • /
    • pp.37-53
    • /
    • 2014
  • A Web-based pile load test (WBPLT) system was developed and implemented in this study. Object-oriented and concept-based software design techniques were adopted to integrate the pile load test database into the system. A total of 673 case histories of pile load test were included in the database. The data consisted of drilled shaft and driven precast concrete pile axial load tests in drained, undrained, and gravel loading conditions as well as pre-analyzed data and back-calculated design parameters. Unified modeling language, a standard software design tool, was utilized to design the WBPLT system architecture with five major concept-based components. These components provide the static structure and dynamic behavior of system message flows in a visualized manner. The open-source Apache Web server is the building block of the WBPLT system, and PHP Web programming language implements the operation of the WBPLT components, particularly the automatic translation of user query into structured query language. A simple search and inexpensive query can be implemented through the Internet browser. The pile load test database is helpful, and data can be easily retrieved and utilized worldwide for research and advanced applications.

연약지반상에 측방유동을 받는 교대말뚝기초의 거동분석 (The Analysis of Pile Bridge Abutments on Soft Clay for Loading from Lateral Soil Movement)

  • 이송;강대원
    • 한국철도학회논문집
    • /
    • 제7권2호
    • /
    • pp.149-154
    • /
    • 2004
  • Pile Bridge Abutments constructed on a soft base are affected by a lateral flow. Laterl flow pressure acting on Pile is very difficult to calculate because of, interation of ground and Pile. So, it is different to estimate displacement of Pile Bridge Abutments. This paper studied about possibility of the displacement estimation of Pile Bridge Abutments by using the equivalent sheet pile wall theory that was Randolph proposed in 1981. Analysis program through using the SAGE CRISP that is FEM program. Analysis data used Centrifuge test results of Springman(1991), Bransby(1997) and Ellis(1997)'s paper. In conclusion, maxium displacement that is carried out by centrifuge test and numerical analysis has occured at the head of pile, as well as Maximum displacement of pile is closely similar. But the moment acting on pile of numerical analysis is under estimated compare to the centrifuge test. Through the comparative study, it is found that displacement estimation by equivalent sheet pile wall is in relatively good agreement with the results of centrifuge test.

Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters

  • Zhao, Zhilong;Chen, Simin;Zhang, Dengke;Peng, Bin;Li, Xuyang;Zheng, Qian
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.113-127
    • /
    • 2022
  • The undrained shear strength of soil is considered one of the engineering parameters of utmost significance in geotechnical design methods. In-situ experiments like cone penetration tests (CPT) have been used in the last several years to estimate the undrained shear strength depending on the characteristics of the soil. Nevertheless, the majority of these techniques rely on correlation presumptions, which may lead to uneven accuracy. This research's general aim is to extend a new united soft computing model, which is a combination of random forest (RF) with grasshopper optimization algorithm (GOA) to the pile set-up parameters' better approximation from CPT, based on two different types of data as inputs. Data type 1 contains pile parameters, and data type 2 consists of soil properties. The contribution of this article is that hybrid GOA - RF for the first time, was suggested to forecast the pile set-up parameter from CPT. In order to do this, CPT data and related bore log data were gathered from 70 various locations across Louisiana. With an R2 greater than 0.9098, which denotes the permissible relationship between measured and anticipated values, the results demonstrated that both models perform well in forecasting the set-up parameter. It is comprehensible that, in the training and testing step, the model with data type 2 has finer capability than the model using data type 1, with R2 and RMSE are 0.9272 and 0.0305 for the training step and 0.9182 and 0.0415 for the testing step. All in all, the models' results depict that the A parameter could be forecasted with adequate precision from the CPT data with the usage of hybrid GOA - RF models. However, the RF model with soil features as input parameters results in a finer commentary of pile set-up parameters.

Centrifuge modelling of pile-soil interaction in liquefiable slopes

  • Haigh, Stuart K.;Gopal Madabhushi, S.P.
    • Geomechanics and Engineering
    • /
    • 제3권1호
    • /
    • pp.1-16
    • /
    • 2011
  • Piles passing through sloping liquefiable deposits are prone to lateral loading if these deposits liquefy and flow during earthquakes. These lateral loads caused by the relative soil-pile movement will induce bending in the piles and may result in failure of the piles or excessive pile-head displacement. Whilst the weak nature of the flowing liquefied soil would suggest that only small loads would be exerted on the piles, it is known from case histories that piles do fail owing to the influence of laterally spreading soils. It will be shown, based on dynamic centrifuge test data, that dilatant behaviour of soil close to the pile is the major cause of these considerable transient lateral loads which are transferred to the pile. This paper reports the results of geotechnical centrifuge tests in which models of gently sloping liquefiable sand with pile foundations passing through them were subjected to earthquake excitation. The soil close to the pile was instrumented with pore-pressure transducers and contact stress cells in order to monitor the interaction between soil and pile and to track the soil stress state both upslope and downslope of the pile. The presence of instrumentation measuring pore-pressure and lateral stress close to the pile in the research described in this paper gives the opportunity to better study the soil stress state close to the pile and to compare the loads measured as being applied to the piles by the laterally spreading soils with those suggested by the JRA design code. This test data shows that lateral stresses much greater than one might expect from calculations based on the residual strength of liquefied soil may be applied to piles in flowing liquefied slopes owing to the dilative behaviour of the liquefied soil. It is shown at least for the particular geometry studied that the current JRA design code can be un-conservative by a factor of three for these dilation-affected transient lateral loads.

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.

사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(I) - 재하시험 자료 분석을 통한 전체지지력에 대한 주면마찰력의 분담율(SRF) 분석 - (Study(I) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - An Analysis of Sharing Ratio of Skin Friction to Total Bearing Capacity (SRF) by Analyzing Pile Load Test Data -)

  • 최용규;이원제;이창욱;권오균
    • 한국지반공학회논문집
    • /
    • 제35권8호
    • /
    • pp.17-30
    • /
    • 2019
  • 실제 시공된 말뚝들의 재하시험 자료 및 매입 PHC말뚝의 설계 자료로부터 전체지지력에 대한 주면마찰력의 분담율인 SRF를 분석하였다. 현장에서 시험 시공된 말뚝의 SRF는 말뚝의 종류, 상대근입길이, 지반의 종류, 재하시험의 종류에 상관없이 42~99%이었다. 매입 PHC말뚝에 대한 설계 자료에서 구한 SRF는 말뚝의 직경, 상대근입길이에 상관없이 풍화암에 소켓된 경우 20~53%의 범위에 분포하였다. 사용말뚝으로 실제 시공된 매입 PHC말뚝에서 재항타 동재하시험 자료로부터 구한 SRF는 말뚝의 직경, 상대근입길이, 지반의 종류에 상관없이 4~83%의 범위에 분산되어 분포하였다. 사용말뚝에서 SRF가 낮은 수준으로 나타나는 이유는 매입 PHC말뚝의 주면고정액의 충전이 제대로 이루어지지 않은 채 시공된 현황으로 볼 수 있었으며 따라서 주면고정액의 시공관리에서 시급하게 개선해야 할 현황이었다. 풍화암에 소켓된 매입 PHC말뚝의 설계에서 사용하고 있는 극한지지력 산정공식으로 계산한 주면마찰력의 SRF는 실제 현장 시공 말뚝의 SRF보다 평균적으로 2.2배 정도로 낮은 수준으로 평가되었다. 이는 설계에서 사용하고 있는 산정공식에 의한 극한주면마찰력이 매우 낮은 수준으로 계산되기 때문이다. 따라서 SRF를 만족시킬 수 있는 새로운 주면마찰력 산정공식의 제안 필요성이 있는 것으로 판단된다.

모형토조실험을 통한 말뚝지지력의 평가 (Evaluation of Pile Bearing Capacity using Calibration Chamber Test)

  • 이인모;이명환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1992년도 봄 학술발표회 논문집 깊은 기초의 연구와 실무(RESEARCH AND PRACTICE OF DEEP FOUNDATIONS)
    • /
    • pp.13-40
    • /
    • 1992
  • Static formulae based on limiting equilibrium theories often provide misleading predictions of pile bearing capacity in cohesionless soils due to the incorrect basic assumptions or oversimplification of actual soil conditions. Soil conditions prior to pile driving are significantly changed after pile installation and imposition of high stress levels. Therefore soi1 parameters at failure rather than those obtained at initial conditions should be used in application of static formulae. In this research. model pile test data were analyzed and compared with the predicted values obtained from the various static formulae. The results showed that the proper choice of soil parameters remarkably improve the reliability of static formulae.

  • PDF

Behavior of full-scale prestressed pile-deck connections for wharves under cyclic loading

  • Blandon, Carlos A.;Krier, Christopher J.;Restrepo, Jose I.
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.455-468
    • /
    • 2019
  • The behavior of pile-deck connections of pile-supported marginal wharfs subjected to earthquake loading is of key importance to ensure a good performance of this type of structures. Two precast-pretensioned pile-deck connections used in the construction of pile-supported marginal wharfs were tested under cyclic loading. The first is a connection with simple reinforcement details and light steel ratio developed for use where moderate pile-deck rotation demands are expected in the wharf. The second is specifically developed to sustain the large rotation, shear force and bending moment demands, as required for the shortest piles in a marginal wharf. Data obtained from the test program is used in the paper to calibrate an equivalent plastic hinge length that can be incorporated into nonlinear analysis models of these structures when prestressed pile-deck connections with duct embedded dowels are used.