• Title/Summary/Keyword: In-grid Condition

Search Result 592, Processing Time 0.035 seconds

Comparative Study on Performance of Grid-Connected Photovoltaic Modules in Tropical Monsoon Climate under Thailand condition (태국 열대몬순기후 조건에서 PV모듈 기술별 성능특성 비교 연구)

  • Kim, Seung Duck;Koh, Byung Euk;Park, Jin Hee;Cheon, Dae In
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 2014
  • The performances of three different types of photovoltaic (PV) module technologies namely, copper-indium-diselenide (CIGS), mono-crystalline silicon (mo-Si) and amorphous silicon (a-Si) have been comparatively studied in the grid-connected system for more than a year under the tropical monsoon climate of Thailand. The yields, performance ratios and system efficiencies for the respective PV module technologies have been calculated and a comparison is presented here. The performance ratios of the initial operation year for CIGS showed highest among the compared technologies under Thailand climate conditions by marking 97.0% while 89.6% for a-Si and 81.5% for mo-Si. Although mo-Si has shown highest efficiencies all over the period, under the testing conditions, the operating efficiency of mo-Si was down-graded from its reference value mainly due to high operating temperature and the efficiency of the tested CIGS module was also found as high as that of mo-Si in the study. Accordingly, outdoor assessment shows that CIGS modules have demonstrated high performance in terms of yields and performance ratios in Thailand climate conditions.

Study on the Optimization of Pulse GTAW Process for Diaphragm with Thin Thickness (극박 다이아프램의 펄스 GTAW 공정 최적화에 관한 연구)

  • Park, Hyoung-Jin;Hwang, In-Sung;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This paper has aimed to prevent excessive heat input by controlling arc distribution and heat input capacity with pulse GTAW in order to improve weld quality in 0.08mm pressure gauge diaphragm and flange welding parts. A design of experiment was designed using Box-Behnken method to optimize a welding process. The pulse GTAW parameters such as pulse current, base current, pulse duty, frequency and welding speed were set to input variables while hydraulic pressure that represents welding characteristics in diaphragm and flange joint were set to output variables. Based on the test result, a second regression equation was obtained between input and output variables and turned out significant. Besides, an influence of parameters has been confirmed through response surface analysis using the second-order regression equation and optimum welding condition was obtained through a grid-search method. The optimum welding condition was set to pulse current 84.4(A), base current 29.6(A), pulse duty 58.8(%), frequency 10(%), and welding speed 596(mm/min). Then, decent bead shape was acquired with no excessive heat input under the $2.3kgf/cm^2$ of hydrostatic pressure.

Analysis of Tidal Flow Using the Frequency Domain Finite Element Method (I) (유한요소법을 이용한 해수유동 해석 (I))

  • 권순국;고덕구;조국광;김준현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.73-83
    • /
    • 1991
  • A numerical simulation of a 2-dimensional tidal flow in a shallow sea was performed using the frequency domain finite element method. In this study, to overcome the inherent problems of a time domain model which requires high eddy viscosity and small time steps to insure numerical stability, the harmonic function incorporated with the linearized function of governing equations was applied. Calculations were carried out using the developed tidal model(TIDE) in a rectangular channel of lOm(depth) X 4km (width) X 25km(length) under the condition of tidal waves entering the channel closed at one end for both with and without bottom friction damping. The predicted velocities and water levels at different points of the channel were in close agreement with less than 1 % error between the numerical and analytical solutions. The results showed that the characteristics of the tidal flow were greatly affected by the magnitude of tidal elevation forcing, and not by on surface friction, wind, or the linear bottom friction when the value was less than 0.01. For the optimum size of grid to obtain a consistent solution, the ratio between the length of the maximum grid and the tidal wave length should be less than 0.0018. It was concluded that the finite element tidal model(TIDE) developed in this study could handle the numerical simulation of tidal flows for more complex geometrical conditions.

  • PDF

Aphrodisiac Evaluation in Sexually Naive Male Mice after Chronic Administration of Eurycoma longifolia Jack

  • Ang, Hooi Hoon;Sim, Meng-Kwoon
    • Natural Product Sciences
    • /
    • v.4 no.2
    • /
    • pp.58-61
    • /
    • 1998
  • Eurycoma longifolia Jack was evaluated for aphrodisiac property on sexually naive male mice using the electrical copulation cage. Optimum condition was provided for this study and the male mice were treated with 500 mg/kg of either chloroform, methanol, water or n-butanol fractions from E. longifolia Jack. However, the mice in the yohimbine and control groups received 30 mg/kg and 3 ml/kg of yohimbine and normal saline respectively. The male mice were then conditioned to seek either an estrous female, sexually vigorous male or no mouse, a measurement of right, wrong or no choice respectively. Besides this, hesitation time which was the time spent before the sexually naive male mice crossed the electrical grid (maintained at 0.12 mA) was also determined. Results showed that E. longifolia Jack possesses aphrodisiac property on the sexually naive male mice as shown by the slow and transient reduction in hesitation time and also a similar manner in the increase in the % of sexually naive male mice scoring right choice throughout the investigation period. Hence, this further supports the folkuse of this plant as aphrodisiac.

  • PDF

CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS (HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석)

  • Sa, J.H.;You, Y.H.;Park, J.S.;Park, S.H.;Jung, S.N.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF

A Flow Characteristics for a Separation Behavior of Two-body Vehicle (비행 조건에 따른 비행체 단분리의 주위 유동장 해석)

  • Park, Geunhong;Kim, Kiun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.266-267
    • /
    • 2017
  • A numerical investigation of the stage separation behavior of two-body vehicle focusing on its flow characteristics were carried out. For this simulation, separation of a booster from vehicle was modeled by a chimera grid system and calculated by using commercial code, CFD-FASTRAN$^{TM}$. Consideration of a spring force, gravity and relative acceleration of a booster was the essential factor that simulates the realistic situation. In this study, It was validated that the booster separation time decreases with increase in flight mach number and angle of attack. In view of the results so far achieved, it was expected that the dynamics modeling and boundary condition set up applied in this study will be helpful in a estimation of a safe stage separation and event sequence of flight test.

  • PDF

Model-based Analysis of Cell-to-Cell Imbalance Characteristic Parameters in the Battery Pack for Fault Diagnosis and Over-discharge Prognosis (배터리 팩 내부 과방전 사전 진단을 위한 모델기반 셀 간 불균형 특성 파라미터 분석 연구)

  • Park, Jinhyeong;Kim, Jaewon;Lee, Miyoung;Kim, Byoung-Choul;Jung, Sung-Chul;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.381-389
    • /
    • 2021
  • Most diagnosis approaches rely on historical failure data that might not be feasible in real operating conditions because the battery voltage and internal parameters are nonlinear according to various operating conditions, such as cell-to-cell configuration and initial condition. To overcome this issue, the estimator and the predictor require integrated approaches that consider comprehensive data, with the degradation process and measured data taken into account. In this paper, vector autoregressive models (VAR) with various parameters that affect overdischarge to the cell in the battery pack were constructed, and the cell-to-cell parameters were identified using an adaptive model to analyze the influence of failure prognosis. The theoretical analysis is validated using experimental results in terms of the feasibility and advantages of fault prognosis.

Extended Kepler Grid-based System for Diabetes Study Workspace

  • Hazemi, Fawaz Al;Youn, Chan-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.230-233
    • /
    • 2011
  • Chronic disease is linked to patient's' lifestyle. Therefore, doctor has to monitor his/her patient over time. This may involve reviewing many reports, finding any changes, and modifying several treatments. One solution to optimize the burden is using a visualizing tool over time such as a timeline-based visualization tool where all reports and medicine are integrated in a problem centric and time-based style to enable the doctor to predict and adjust the treatment plan. This solution was proposed by Bui et. al. [2] to observe the medical history of a patient. However, there was limitation of studying the diabetes patient's history to find out what was the cause of the current development in patient's condition; moreover what would be the prediction of current implication in one of the diabetes' related factors (such as fat, cholesterol, or potassium). In this paper, we propose a Grid-based Interactive Diabetes System (GIDS) to support bioinformatics analysis application for diabetes diseases. GIDS used an agglomerative clustering algorithm as clustering correlation algorithm as primary algorithm to focus medical researcher in the findings to predict the implication of the undertaken diabetes patient. The algorithm was Chronological Clustering proposed by P. Legendre [11] [12].

Analysis Operating Characteristics of Matrix-Type Superconducting Fault Current Limiter in Ground Faults of Power Grid (전력계통의 지락사고에 대한 매트릭스형 초전도 한류기의 동작특성)

  • Oh, Kum-Gon;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Seong-Bo;Kim, Deog-Goo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.14-20
    • /
    • 2009
  • It is very important for power stability to suppress the excessive fault current happened frequently in the real power grid The superconducting fault current limiter (SFCL) is one of the most effective ways to reduce the fault current among the facilities developed so far. In this paper, we have investigated the operating characteristics of the power grid with the SFCL according to three types such as the single, double and triple line-to-ground faults. In addition, we analyzed the consumption power of the superconducting units based on the working data of the SFCL. We confirmed that the fault current could be limited lower than its peak value to 85 percentage in initial fault condition and to 85 percentage after one cycle in the matrix-type SFCL. The consumption powers of the superconducting units were almost equal by reduction of the difference of the critical current between superconducting units element.

RTDS based Transient Analysis of PMSG Type wind Power Generation System (RTDS를 이용한 영구자석형 동기발전기를 갖는 풍력발전시스템의 과도현상 해석)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Kim, Nam-Won;Lee, Hyo-Guen;Seo, Hyo-Ryong;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.572-576
    • /
    • 2011
  • The operation of permanent magnet synchronous generator (PMSG) type wind power generation system (WPGS) can be affected by the utility condition. Consequently, transient condition of utility should be analyzed for the safe and reliable operation of WPGS. This paper presents transient analysis results of a PMSG type WPGS using real time digital simulator (RTDS). A fault condition was applied to the transient analysis of PMSG type WPGS as the transient grid condition. The simulation results were analyzed to show the operational characteristic of PMSG type WPGS under the transient phenomenon of utility.