• Title/Summary/Keyword: In-cylinder oxidation

Search Result 30, Processing Time 0.02 seconds

Modeling of Hydrocarbon Emissions from Spark Ignition Engines (스파크 점화기관의 탄화수소 배출 모델링)

  • 고용서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.58-71
    • /
    • 1996
  • A model which calculates the hydrocarbon emissions from spark ignition engines is presented The model contains the formation of HC emissions due to both crevices around piston ring top land and oil films on the cylinder wall. The model also considers in-cylinder oxidation and exhaust port oxidation of desorbed HC from crevices and oil films after combustion process. The HC emissions model utilizes the results of SI engine cycle simulation. The model predicts well the trends of HC emissions from the engines when varying engine parameters.

  • PDF

EFFECTS OF SPLIT INJECTION AND OXYGEN-ENRICHED AIR ON SOOT EMISSIONS IN A DIESEL ENGINE

  • Nguyen, Khai;Sung, Nak-Won;Lee, Sang-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2965-2970
    • /
    • 2008
  • Effects of split injection and oxygen-enriched air on soot emissions in a DI diesel engine were studied by the KIVA-3V code. When split injection is applied, the second injection of fuel into a cylinder results in two separate stoichiometric zones which increases soot oxidation. As a result, soot emissions are decreased with split injection. When oxygen-enriched air is applied together with split injection, higher concentration of oxygen helps secondary combustion which results in a higher temperature in the cylinder. The increased temperature promotes growth reaction of acetylene with soot but doesn't improve the acetylene formation during the second injection of fuel. As more acetylene is consumed in the growth reaction of acetylene, the net acetylene mass in the cylinder is decreased, which leads to a decrease of soot formation. With an increase of soot oxidation caused by split injection, the soot emissions are decreased significantly. However, to avoid excessive NOx emissions with increased oxygen concentration, the level of oxygen concentration should be lower than 22% in volume.

  • PDF

Combustion Chamber Shape Effects on Flame Temperatgure and KL Value in a Diesel Engine (디젤엔진에서 연소실 형상이 화영온도 및 KL치에 미치는 영향)

  • 이선봉;이태원;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.99-106
    • /
    • 1999
  • The present study deals with the effect of combustion chamber shape on in-cylinder soot oxidation characteristics of a D.I . diesel engine. The analysed combustion chambers were a toroidal and a reentrant with a projection(Complex). The two-color method was used to measure in-cylinder flame temperature and KL value which is approximately proportional to the soot amount along the optical path. In addition, heat release rate was calculated from the in-cylinder pressure data. From these investigations , the soot oxidation of the reentrant and the complex which were strengthen squish flows went worse in late combustion period under heavy-load operation compared to that of the toroidal at retarded fuel injection timing . It might be the cause of the flame holding that squish lip depress the outflow of flame from the bowl to the entire combustion space.

  • PDF

The Effect of Control of Low Temperature Oxidation using DME-gasoline Fuel Mixture on the HCCI Combustion (저온산화반응 제어가 DME-가솔린 혼합연료의 HCCI 연소에 미치는 영향)

  • Park, Youngjin;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • The main purpose of the study is to investigate the ideal manner and ratio to inject gasoline and DME simultaneously into intake port, and moreover to confirm the characteristics of combustion and emission of engine. Experimental conditions are 1200 rpm, compression ratio 8.5, intake air temperature (383 K). Internal cylinder pressure was collected to confirm the characteristics of combustion in order to calculate the heat release rate in the cylinder. In addition, HORIBA (MEXA 7100) which was possible analyzing emissions (NOx, CO, HC) was used. Vanguard gasoline engine (23HP386447) was used in this experiment. The result show that fuel design (DME-Gasoline) leads to the decrease of low temperature heat release, which is a benefit for higher-load on the HCCI engine. Also, IMEP and the indicated thermal efficiency increase with combustion-phasing retard, and these observations can be explained by considering the control of low temperature oxidation of DME.

Soot Formation and Oxidation of an Ethylene Laminar Diffusion Flame with Different Radiation Boundary Conditions (에틸렌 층류 확산화염의 복사경계조건에 따른 매연생성 및 산화특성)

  • Lee, Chun-Beom;Nam, Youn-Woo;Lee, Won-Nam;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.11-18
    • /
    • 2003
  • The soot formation and oxidation characteristics with different radiation boundary conditions have been studied experimentally in a co-flow ethylene/air laminar diffusion flame. The boundary conditions are two cases, one is a fully refractive radiation boundary condition by a polished aluminum cylinder(AL) and the other is a fully absorbing radiation boundary condition by a black body cylinder(BB). The AL case compared with BB condition show the lower inception point, denser soot volume fraction, wider and longer annular soot area owing to the reabsorption of radiating energy.

  • PDF

Piston Crevice Hydrocarbon Oxidation During Expansion Process in an SI Engine

  • Kyoungdoug Min;Kim, Sejun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.888-895
    • /
    • 2003
  • Combustion chamber crevices in SI engines are identified as the largest contributors to the engine-out hydrocarbon emissions. The largest crevice is the piston ring-pack crevice. A numerical simulation method was developed, which would allow to predict and understand the oxidation process of piston crevice hydrocarbons. A computational mesh with a moving grid to represent the piston motion was built and a 4-step oxidation model involving seven species was used. The sixteen coefficients in the rate expressions of 4-step oxidation model are optimized based on the results from a study on the detailed chemical kinetic mechanism of oxidation in the engine combustion chamber. Propane was used as the fuel in order to eliminate oil layer absorption and the liquid fuel effect. Initial conditions of the burned gas temperature and in-cylinder pressure were obtained from the 2-zone cycle simulation model. And the simulation was carried out from the end of combustion to the exhaust valve opening for various engine speeds, loads, equivalence ratios and crevice volumes. The total hydrocarbon (THC) oxidation in the crevice during the expansion stroke was 54.9% at 1500 rpm and 0.4 bar (warmed-up condition). The oxidation rate increased at high loads, high swirl ratios, and near stoichiometric conditions. As the crevice volume increased, the amount of unburned HC left at EVO (Exhaust Valve Opening) increased slightly.

Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution Characterized by Rotating Cylinder Electrode

  • Kim, Jun-Hwan;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.595-604
    • /
    • 2000
  • Flow-Accelerated Corrosion Behavior of SA106 Gr.C steel in room temperature alkaline solution simulating the CANDU primary water condition was studied using Rotating Cylinder Electrode. Systems of RCE were set up and electrochemical parameters were applied at various rotating speeds. Corrosion current density decreased up to pH 10.4 then it increased rapidly at higher pH. This is due to the increasing tendency of cathodic and anodic exchange half-cell current. Corrosion potential shifted slightly upward with rotating velocity. Passive film was formed from pH 9.8 by the mechanism of step oxidation and the subsequent precipitation of ferrous species into hydroxyl compound. Above pH 10.4, the film formation process was active and the film became stable. Corrosion current density showed increment in pH 6.98 with the rotating velocity, while it soon saturated from 1000 rpm above pH 9.8. This seems that activation process which represents formation of passive film on the bare metal surface controls the entire corrosion process

  • PDF

Soot Measurement in an Optically Accessible Diesel Engine Using Laser Sheet 1st report : The Development of Optically Accessible Diesel Engine and Photography of 2D Soot Images Using Laser Sheet (레이저시트광을 이용한 가시화 디젤엔진에서의 Soot 계측 제1보 : 가시화 디젤엔진의 제작 및 레이저를 이용한 Soot의 2D 화상촬영)

  • 이명준;박태기;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.64-71
    • /
    • 2000
  • In order to clarify the characteristics of soot formation and oxidation in-cylinder of a diesel engine, it is necessary to diagnose accurately for combustion of in-cylinder. The past techniques for soot measurement have limitations in providing the characteristics of soot in a diesel engine, whereas, laser-based 2D imaging diagnostics have the potential to provide better temporally and spatially resolved measurements of the soot distribution. We rebuilt an optically accessible diesel engine which is similar to the conditions of a conventional engine and tried to measure soot distribution in a cylinder of the diesel engine using laser induced scattering(LIS) and laser induced incandescence(LII). Some results were acquired in this study. LIS and LII signal that show soot distribution of a in-cylinder were taken by ICCD properly. The signal of LIS was intenser than that of LII. Although they have some differences of signal intensity in early combusion period, both of signals show that they are generally similar in late combustion period, after ATDC 50 degree.

  • PDF

Estimation of Hydrocarbon Oxidation by Measuring He Concentrations in an SI Engine Exhaust Port (프로판 엔진의 배기 포트에서 탄화수소 산화율 추정)

  • Yi, Hyung-Seung;Park, Jong-Bum;Min, Kyoung-Doug;Kim, Eung-Seo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.660-667
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, concentrations of individual HC species were measured in exhaust process, the degree of oxidation were obtained. Using a solenoid-driven fast sampling system on single-cylinder research engine fueled with 94% propane, the profiles of unburned hydrocarbons (HCs) and non-fuel HCs with a propane fueled engine were obtained from several locations in the exhaust port during the exhaust process. The sampled gases were analyzed using a gas chromatography of HC species with 4 or lesser carbon atoms. The change of total HC concentration and HC fractions of major components through the exhaust port were discussed. The results showed that non-uniform distribution of HC concentration existed around the exhaust valve and changed with time, and that the exhaust gas exhibited nearly uniform concentration profile at port exit, which was due to mixing and oxidation. Also it could be known that bulk gas with relatively high HC concentration came out through the bottom of the exhaust valve. To estimate the mass-based degree of HC oxidation in the exhaust port from measured HC concentrations, a 3-zone diagnostic cycle simulation and plug flow modeling were used. The degree of oxidation ranged between 26 % and 36 % corresponding to the engine operation conditions.

Electrochemical Analysis on Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution

  • Kim, Jun Hwan;Kim, In Sup;Chung, Han Sub
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • Flow-Accelerated Corrosion behavior concerning both activation and mass transfer process of SA106 Gr.C steel was studied using rotating cylinder electrode in room temperature alkaline solution by DC and AC electrochemical techniques. Passive film was tanned from pH 9.8 by step oxidation of ferrous product into hydroxyl compound. Corrosion potential shifted slightly upward with rotating velocity through the diffusion of cathodic species. Corrosion current density increased with rotating velocity in pH 6.98, while it soon saturated from 1000 rpm at above pH 9.8. On the other hand the limiting current increased with rotating speed regardless of pH values. It seems that activation process, which represents formation of passive film on the bare metal surface, controls the entire corrosion kinetics