• Title/Summary/Keyword: In-core detector

Search Result 105, Processing Time 0.027 seconds

A Study on Feasibility Analysis and Alternatives for Infrared Detector Development (적외선 검출기 개발가능성 및 대안분석 연구)

  • Min, Sung Ki;Kim, Chul Whan;Kim, Kyoung Su
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2005
  • The purpose of this paper analyze development feasibility and alternatives for infrared detector development in both technology and cost. Infrared Detector is core component of Thermal Imaging System and developed by ADD from 2006 10 2008 year. We got raw input data from development and technical expert, and then analyze cost and technology for development feasibility, and alternatives study. Technology level is analyzed by TRL(Technology Readiness Level) and AOA(Analysis of Alternatives) is done by development cost estimate. Estimating the development cost, we use SEER-H that is parametric cost estimating tool based on Knowledge Base. This study can help those who are related to the cost and development feasibility analysis of other weapon systems.

  • PDF

STUDY OF CORE SUPPORT BARREL VIBRATION MONITORING USING EX-CORE NEUTRON NOISE ANALYSIS AND FUZZY LOGIC ALGORITHM

  • CHRISTIAN, ROBBY;SONG, SEON HO;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.

A complete 3D map of Bell Glasstone spatial correction factors for BRAHMMA subcritical core

  • Shukla, Shefali;Roy, Tushar;Kashyap, Yogesh;Shukla, Mayank;Singh, Prashant
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3488-3493
    • /
    • 2022
  • Accelerator driven subcritical systems have long been discussed as facilities which can be used for solving the nuclear waste problem. The physics of these systems is very different from conventional reactors and new techniques had to be developed for reactivity monitoring. One such technique is the Area Ratio Method which studies the response of a subcritical system upon insertion of a large number of neutron pulses. An issue associated with this technique is the spatial dependence of measured reactivity which is intrinsic to the sub criticality of the system since the reactor does not operate on the fundamental mode and measured reactivity depends on the detector position. This is generally addressed by defining Bell-Glasstone spatial correction factor. This factor upon multiplication with measured reactivity gives the correct reactivity which is independent of detector location. Monte Carlo Methods are used for evaluating these factors. This paper presents a complete three dimensional map of spatial correction factors for BRAHMMA subcritical system. In addition, the dataset obtained also helps in identifying detector locations where the correction factor is close to unity, thereby implying no correction if the detector is used at those locations.

Photon-counting digital holography

  • Hayasaki, Yoshio
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.165-166
    • /
    • 2009
  • A hologram was recorded with two-dimensional scanning of an optical fiber connected to a single-photon counting detector under ultra-weak illumination. The object image was clearly reconstructed in a computer from the hologram. The dependence of hologram quality on the illumination light intensity was estimated.

  • PDF

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

Design and Realization of Phase Sensitive Detector Circuitry of Two-Channel Ring-Core Flux-Gate Compass (2-체널 링-코어 플럭스-게이트 콤파스의 위상검출 회로 설계와 구현에 관한 연구)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.127-136
    • /
    • 2002
  • This paper Presents a discussion on the design and realization for the Phase Sensitive Defector (PSD) circuitry of Flu$\chi$-gate Compass that gives direction information to the Directional Frequency Analysis and Recording (DIFAR) Sonobuoy in Air Anti-Submarine Warfare. PSD circuitry is realized with Twin-T RC networked active band-pass filter. Results of a performance test the PSD circuitry shows that the effectiveness of band-pass filtering of desired $2F_0$ second harmonic signal, which is Pro- portional to the direction of earth's magnetic field. This resulted in the extraction of direction information.

A Case Study on the Application of Systems Engineering to the Development of PHWR Core Management Support System (시스템엔지니어링 기법을 적용한 가압중수로 노심관리 지원시스템 개발 사례)

  • Yeom, Choong Sub;Kim, Jin Il;Song, Young Man
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2013
  • Systems Engineering Approach was applied to the development of operator-support core management system based on the on-site operation experience and document of core management procedures, which is for enhancing operability and safety in PHWR (Pressurized Heavy Water Reactor) operation. The dissertation and definition of the system were given on th basis of investigating and analyzing the core management procedures. Fuel management, detector calibration, safety management, core power distribution monitoring, and integrated data management were defined as main user's requirements. From the requirements, 11 upper functional requirements were extracted by considering the on-site operation experience and investigating documents of core management procedures. Detailed requirements of the system which were produced by analyzing the upper functional requirements were identified by interviewing members who have responsibility of the core management procedures, which were written in SRS (Software Requirement Specification) document by using IEEE 830 template. The system was designed on the basis of the SRS and analysis in terms of nuclear engineering, and then tested by simulation using on-site data as a example. A model of core power monitoring related to the core management was suggested and a standard process for the core management was also suggested. And extraction, analysis, and documentation of the requirements were suggested as a case in terms of systems engineering.

Reactor Noise Analyses in Yonggwang 3&4 Nuclear Power Plants (영광 3&4 호기의 원자로잡음신호 해석)

  • Park, Jin-Ho;Ryu, Jeong-Soo;Sim, Woo-Gun;Kim, Tae-Ryong;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.679-686
    • /
    • 2000
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics, thermal-hydraulics, and structural dynamics. Reactor noise analyses of ex-core neutron detector signals have been performed to monitor the vibration modes of reactor internals such as fuel assembly and Core Support Barrel in Yonggwang 3&4 Nuclear Power Plant. A real time mode separation technique have been developed and applied for the analyses. It has been found that the first vibration mode frequency of the fuel assembly was around 2.5 Hz, the beam and shell mode frequencies of CSB(Core Support Barrel) 8 Hz and 14.5 Hz, respectively. Also the analyses data base have been constructed for the continuous monitoring and diagnose of the reactor internals.

  • PDF