• Title/Summary/Keyword: In-Water

Search Result 81,833, Processing Time 0.082 seconds

Application and performance evaluation of mass balance method for real-time pipe burst detection in supply pipeline (도수관로 실시간 관파손감지를 위한 물수지 분석 방법 적용 및 성능평가)

  • Eunher Shin;Gimoon Jeong;Kyoungpil Kim;Taeho Choi;Seon-ha Chae;Yong Woo Cho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.347-361
    • /
    • 2023
  • Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.

Projected Climate Change Impact on Surface Water Temperature in Korea (기후변화에 따른 지표수의 수온 영향평가)

  • Ahn, Jong Ho;Han, Dae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Global human activities associated with the use of fossil fuels have aggravated climate change, increasing air temperature. Consequently, climate change has the potential to alter surface water temperature with significant impacts on biogeochemical cycling and ecosystems in natural water body. In this study, we examined temporal trends on historical records of surface water temperature, and investigated the air temperature/water temperature relationship and the potential water temperature change from an air temperature scenario developed with regional climate model. Although the temporal trends of water temperature are highly variable site-by-site, surface water temperature was highly dependent on air temperature, and has increased significantly in some sub-watersheds over the last two decades. The results presented here demonstrate that water temperature changes are expected to be slightly higher in river system than reservoir systems and more significant during winter than summer for both river and reservoir system. Projected change of surface water temperature will likely increase $1.06^{\circ}C$ for rivers and $0.95^{\circ}C$ for reservoirs during the period 2008 to 2050. Given the potential climatic changes, every $1^{\circ}C$ increase in water temperature could cause dissolved oxygen levels to fall every 0.206 ppm.

Evaluation of Water Supply and Selection of Deficient Districts in Gunwigun Farmland for Drought Response (가뭄대책 수립을 위한 군위군 경작지의 용수공급 평가와 부족지구의 선정)

  • Ahn, Seung Seop;Park, Ki bum
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1099-1108
    • /
    • 2020
  • In this study, the capacity of supplying agricultural water to 13 districts was analyzed by calculating the necessary water supply for the arable land of Gunwi-gun and examining the capacity of supplying water to reservoirs, streams, pumping stations, collection sites, and groundwater wells in Gunwi-gun. As a result, among the 13 districts the second district was found to be short of water by 1.2×106 tons/year. In general, local governments establish drought measures by selecting drought disaster risk zones. While selecting drought-risk areas, some water-poor areas that do not have water sources should be selected, even if the entire area has a sufficient water supply. The water-supply evaluation at the regional level was insufficient for locating areas without water sources, but most areas with water sources, such as streams, reservoirs, and pumping stations, were found to have no shortage of water. To locate water shortage areas without water sources, GIS analysis conducted a field survey of areas with a distance of 4 or less than that of water sources analyzed by GIS analysis. Sixty-nine sites in 13 districts were selected for the on-site survey and six areas of water shortage were identified in areas other than the second district.

The Corrosion Effect of the Water Pipelines in Buildings according to Drinking Water Quality (수돗물 수질에 따른 옥내급수관 부식에 미치는 영향분석)

  • Yu, Soon-Ju;Park, Su-Jeong;Ahn, Kyung-Hee;Kim, Hyun-Gu;Kim, Chang-Soo;Jung, Il-Rock;Park, Young-Bok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.701-708
    • /
    • 2008
  • As a countermeasure for reduction of corrosion in the delivery and distribution pipes used for tap water, materials for the pipelines in-houses and the effect of water quality on corrosivity of water pipelines were investigated in the distribution system of Han river. As the corrosion index at 6 water purification facilities of Han river, average Langelier Saturation Index (LI) of raw and finished water were -1.0 and -1.4 respectively and average Larson Index (LR) were 9.5 and 9.9, respectively. And also corrosion potential showed corrosivity in finished water (-431~-462 mV) as well as raw water (-426~-447 mV). This results indicate that tap water quality of han river have corrosivity. To understand the corrosivity effect in pipe material used for premise distribution system, water quality of stagnant tap water and tap water were analyzed and the differences between them were calculated. The difference concentration of iron, copper and zinc were $12.9{\mu}g/L$, $31.0{\mu}g/L$ and $45.0{\mu}g/L$ respectively in galvanized steel pipe for use more than 15 years and showed highest concentration. As a result, the control to corrosivity in the water pipelines, corrosivity control treatment in the water purification system can be applied. In advance it is necessary to monitor corrosivity of water quality using corrosive index because corrosivity may differ from the seasonal and regional characteristics and water chemicals dosage. For the future the guideline for corrosion index have to be established.

Measurement of Irrigation Water Temperature and Preventive Measure against Cold Watter Damage to Paddy Rice (벼의 냉수피해 감소를 위한 관개수온 조사와 대책수립)

  • 정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.52-59
    • /
    • 1999
  • Paddy rice is semi-tropical crop and requires warmirrigation water. If mean water temperature at the water source during the growing period is below 18$^{\circ}C$, sime kinds of water warming mechanism should be taken. In this study irrigation water temperature is measured and preventive measures to cold water damage on paddy rice are suggested. Field observations were performed at 100ha field area downtream of the Unmoon reservoir during the growing season of 1997. Land use, canal system, water temperature at irrigation canals. reservoir, and paddy fields were observed. In addition, growth and yield of the rice at selected plots were observed. Accordingly to the record, cold water damage occurred in this area due to the cold irrigation water supply in 1996. It did not occur because of the effective irrigation water management practice in 1997. However, several preventive measures such as pontoon intake system, using existing weir and construting a new warming pond, are suggested to prevent cold water damage in the future. If a new warming pond is construted to raise irrigation water temperature by 2 $^{\circ}C$, a pond area of 2.94 ha is required.

  • PDF

Carbon Emission Evaluation of Tap Water (수돗물의 탄소 배출량 평가)

  • Kim, Jin-Keun;Jeon, Hong-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.511-517
    • /
    • 2011
  • To evaluate carbon emission in water treatment processes, LCA (life cycle assessment) was applied to 8 multi-regional water treatment plants (WTPs) from intake to supply of tap water. Investigation of 8 WTPs revealed that average carbon emission for 1 $m^3$ of tap water was 221 g. Major carbon emission sources in water supply system were intake and supply processes. Meanwhile, mixing process was the main carbon emission source in unit water treatment processes. Carbon emission was proportional to the turbidity and COD of raw water. Intake of better raw water and minimization of energy consumption in unit processes are needed to reduce carbon emission in the WTPs. In addition, comparison of carbon emission among WTPs can be used as a parameter for optimization of operation and maintenance of water treatment processes.

The agricultural water right in multi-purpose dams (다목적댐에서의 농업용수 수리권)

  • 김진수;김화영
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.59-64
    • /
    • 1998
  • The characteristics of agricultural water rights in multi-purpose dams in Korea was examined. The river system with multi-purpose dams can be divided into national river system and WRC(Water Resources Corporation) river system according to ownership of dam use rights. While the national river system have permitted water rights, the WRC river system have vest water rights and contract water rights. The two river systems have different characteristics of agricultural water rights, and therefore the water right of two system need to be unified. It is also known that water release from multi-purpose dams against water demand does not satisfy agricultural water rights.

  • PDF

Characteristic of Matter Allocation of Calystegia soldanella under Water Stress (갯메꽃의 수분스트레스에 대한 물질분배 특성)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2013
  • Dry matter allocation characteristics of Calystegia soldanella, grown in pots, was analysed to assess its plasticity in response to water-stressed conditions. As water was withheld leaf water potential between the two watering treatments was similar during the first 6 days, followed by a rapid decrease in water-stressed plants. The minimum leaf water potential was -1.50 MPa on day 15 and the maximum leaf water potential was about -0.5 MPa on day 0 in water-stressed plants. In well-watered plants leaf water potential was maintained almost consistently throughout the experiment. There was no significant difference in plant dry weight between the two watering treatments for 9 days after the start of experiment and that was remarkably increased thereafter, compared with that remained without any increase in water-stressed plants. In dry mass partitioning, however, the water-stressed plants showed a great plasticity, showing that there were 1.81, 1.35 and 0.81 times increase in root, stem and leaf, respectively. Dry mass partitioning in well-watered plants varied from 2% to 5%. The difference of dry mass partitioning between the two watering treatments was reflected in leaf mass per unit area (LMA) and root/shoot (R/S) ratio. LMA in water-stressed plants was lower than that in well-watered plants, while R/S ratio in water-stressed plants was higher in well-watered plants. This means that the water-stressed plants reduced its leaf area and increased dry mass partitioning into root and stem during the progress of soil drying. These results indicate that Calystegia soldanella inhabiting in sand dune cope with water stress with high plasticity which can adjust its dry mass partitioning according to soil water conditions.

농업용수의 수온 상승에 관한 연구

  • Hwang, Eun;Kim, Cheol-Gyu;Lee, Sang-Beom
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.17-29
    • /
    • 1972
  • The persent study aims at finding out a means of prevention cool spell damages on the hilly areas. The irrigation plots of 24 hour stored water warm water way and warm water plots, cool water way are respectively established to find out water temperature and influnce on the growing rice plants. The results obtained are summed up as follows. 1. Warm water areas consisted of $5 m^2 Q=0.93 1{\ell}/sec$, V=31 cm/sec, S=1/1, 000, L=81.6m, B=5cm, h=6cm, t=4min 33sec, drops=9 areas, are constructed to help the water temperature of $14.5^{\circ}C$ rise to that of $21.6^{\circ}C$. This indicates lower temperature than $23^{\circ}C$ of critical water temperature in irrigation facilities by $1.45^{\circ}C$ and than $26.2^{\circ}C$ of balanced water temperature of Seoul arears by $4.6^{\circ}C$. But this does not give much influance on rice plant cultivation. 2. The rising of water temperature is influened according to the temperature, solar radiation but the water temperature changes according to the heat absorption of organized materials, weather and terraces. The difference of water temperature could be found in the first growing stage. 3. Through the warm water way of water rises to the temperature of $21.6^{\circ}C$ which also rises to the temperature of around $30^{\circ}C$ in the paddy field of submerged irrigation. The rice plants are comparatively free from prolonged cool damage, reproduction abstructive damage. 4. The water temperature in rice field in proportion to temperature influence of weather condition but the water temperature approaches to that of weather in the days of later growing stage and water temperature become lower than the air temperature in the fruit stage. 5. The water in the submreged field is $10^{\circ}C$ warmer than in the warm water way during the first growing stage period but the water temperature in the warm water way is warmer in the later growing stage period. The cool water of $14.5^{\circ}C$ is warmed to $30.1^{\circ}C$ and rice plants cultivation is free from other damages. 6. The 12% increased production or 570.98kg/10a is made cool water plot by rising the temperature of water from $14.5^{\circ}C$ to $21.6^{\circ}C$ making the water run through warm water way. 7. The damage inflicted by the cool water irrigation during the first growing stage period is the obstruction of peak tillering stage and the obstruction of heading the later growing stage period and the obstruction of fruiting and number of panides per fill.

  • PDF

Development of Regression Equation for Water Quantity Estimation in a Tidal River (감조하천에서의 저수위 유량산정 다중회귀식 개발)

  • Lee, Sang Jin;Ryoo, Kyong Sik;Lee, Bae Sung;Yoon, Jong Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 2007
  • Reliable flow measurement for dry season is very important to set up the in-stream flow exactly and total maximum daily load control program in the basin. Especially, in the points which tidal current effects are dominant because reliability of the low measurement decrease. The reliable measuring methods are needed. In this study, we analysis the water surface elevation difference of water surface elevation. Quantity relationship to consider tidal currents in these regions. It is known that tidal current effects from Nakdong river barrage are dominant in Samrangjin measuring station. We developed multiple regression equation with water surface elevation, quantity, and difference of water surface elevation and compared these results water measured rating curve. All of these regression equation including linear regression equation and log regression equation fits better measured data them existing water surface elevation quantity line and Among three equations, the log regression equation is best to represent the measured the rating curve in Samrangjin point. The log regression equation is useful method to obtain the quantity in the regions which tidal currents are dominant.