• Title/Summary/Keyword: In-Vessel Retention (IVR)

Search Result 24, Processing Time 0.019 seconds

A SE Approach to Assess The Success Window of In-Vessel Retention Strategy

  • Udrescu, Alexandra-Maria;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.27-37
    • /
    • 2020
  • The Fukushima Daiichi accident in 2011 revealed some vulnerabilities of existing Nuclear Power Plants (NPPs) under extended Station Blackout (SBO) accident conditions. One of the key Severe Accident Management (SAM) strategies developed post Fukushima accident is the In-Vessel Retention (IVR) Strategy which aims to retain the structural integrity of the Reactor Pressure Vessel (RPV). RELAP/SCDAPSIM/MOD3.4 is selected to predict the thermal-hydraulic response of APR1400 undergoing an extended SBO. To assess the effectiveness of the IVR strategy, it is essential to quantify the underlying uncertainties. In this work, both the epistemic and aleatory uncertainties are considered to identify the success window of the IVR strategy. A set of in-vessel relevant phenomena were identified based on Phenomena Identification and Ranking Tables (PIRT) developed for severe accidents and propagated through the thermal-hydraulic model using Wilk's sampling method. For this work, a Systems Engineering (SE) approach is applied to facilitate the development process of assessing the reliability and robustness of the APR1400 IVR strategy. Specifically, the Kossiakoff SE method is used to identify the requirements, functions and physical architecture, and to develop a design verification and validation plan. Using the SE approach provides a systematic tool to successfully achieve the research goal by linking each requirement to a verification or validation test with predefined success criteria at each stage of the model development. The developed model identified the conditions necessary for successful implementation of the IVR strategy which maintains the vessel integrity and prevents a melt-through.

Sensitivity Studies on Thermal Margin of Reactor Vessel Lower Head During a Core Melt Accident

  • Kim, Chan-Soo;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.379-394
    • /
    • 2000
  • As an in-vessel retention (IVR) design concept in coping with a severe accident in the nuclear power plant during which time a considerable amount of core material may melt, external cooling of the reactor vessel has been suggested to protect the lower head from overheating due to relocated material from the core. The efficiency of the ex-vessel management may be estimated by the thermal margin defined as the ratio of the critical heat flux (CHF)to the actual heat flux from the reactor vessel. Principal factors affecting the thermal margin calculation are the amount of heat to be transferred downward from the molten pool, variation of heat flux with the angular position, and the amount of removable heat by external cooling In this paper a thorough literature survey is made and relevant models and correlations are critically reviewed and applied in terms of their capabilities and uncertainties in estimating the thermal margin to potential failure of the vessel on account of the CHF Results of the thermal margin calculation are statistically treated and the associated uncertainties are quantitatively evaluated to shed light on the issues requiring further attention and study in the near term. Our results indicated a higher thermal margin at the bottom than at the top of the vessel accounting for the natural convection within the hemispherical molten debris pool in the lower plenum. The information obtained from this study will serve as the backbone in identifying the maximum heat removal capability and limitations of the IVR technology called the Cerium Attack Syndrome Immunization Structures (COASISO) being developed for next generation reactors.

  • PDF

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

A Preliminary Assessment on ERVC Performance Depending on Insulation Conditions (단열재 조건에 따른 원자로용기 외벽냉각 성능 예비분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Lots of researches have been conducted on in-vessel retention (IVR) to prevent or mitigate severe accident in nuclear power plants. Various methodologies were proposed and the external reactor vessel cooling was selected as a part of promising IVR strategy. In this study, the strategy is strengthened by enhancing the natural circulation performance through the adoption of insulation in the reactor cavity. A thermal analysis was carried out based on an assumed accident scenario and its results were used as boundary conditions for subsequent seven flow analysis cases. By comparing the natural circulation performance, effects of annular gaps and insulation shapes on the mass flow rate and flow velocity were quantified. The improvement in cooling performance can be reflected in actual design via detailed assessment.

A Systems Engineering Approach to Ex-Vessel Cooling Strategy for APR1400 under Extended Station Blackout Conditions

  • Saja Rababah;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.32-45
    • /
    • 2023
  • Implementing Severe Accident Management (SAM) strategies is crucial for enhancing a nuclear power plant's resilience and safety against severe accidents conditions represented in the analysis of Station Blackout (SBO) event. Among these critical approaches, the In-Vessel Retention (IVR) through External Reactor Vessel Cooling (IVR-ERVC) strategy plays a key role in preventing vessel failure. This work is designed to evaluate the efficacy of the IVR strategy for a high-power density reactor APR1400. The APR1400's plant is represented and simulated under steady-state and transient conditions for a station blackout (SBO) accident scenario using the computer code, ASYST. The APR1400's thermal-hydraulic response is analyzed to assess its performance as it progresses toward a severe accident scenario during an extended SBO. The effectiveness of emergency operating procedures (EOPs) and severe accident management guidelines (SAMGs) are systematically examined to assess their ability to mitigate the accident. A group of associated key phenomena selected based on Phenomenon Identification and Ranking Tables (PIRT) and uncertain parameters are identified accordingly and then propagated within DAKOTA Uncertainty Quantification (UQ) framework until a statistically representative sample is obtained and hence determine the uncertainty bands of key system parameters. The Systems Engineering methodology is applied to direct the progression of work, ensuring systematic and efficient execution.

CORIUM BEHAVIOR IN THE LOWER PLENUM OF THE REACTOR VESSEL UNDER IVR-ERVC CONDITION: TECHNICAL ISSUES

  • Park, Rae-Joon;Kang, Kyoung-Ho;Hong, Seong-Wan;Kim, Sang-Baik;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.237-248
    • /
    • 2012
  • Corium behavior in the lower plenum of the reactor vessel during a severe accident is very important, as this affects a failure mechanism of the lower head vessel and a thermal load to the outer reactor vessel under the IVR-ERVC (In-Vessel corium Retention through External Reactor Vessel Cooling) condition. This paper discusses the state of the art and technical issues on corium behavior in the lower plenum, such as initial corium pool formation characteristics and its transient behavior, natural convection heat transfer in various geometries, natural convection heat transfer with a phase change of melting and solidification, and corium interaction with a lower head vessel including penetrations of the ICI (In-Core Instrumentation) nozzle are discussed. It is recommended that more detailed analysis and experiments are necessary to solve the uncertainties of corium behavior in the lower plenum of the reactor vessel.

EXPERIMENTAL STUDY OF CRITICAL HEAT FLUX WITH ALUMINA-WATER NANOFLUIDS IN DOWNWARD-FACING CHANNELS FOR IN-VESSEL RETENTION APPLICATIONS

  • Dewitt, G.;Mckrell, T.;Buongiorno, J.;Hu, L.W.;Park, R.J.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.335-346
    • /
    • 2013
  • The Critical Heat Flux (CHF) of water with dispersed alumina nanoparticles was measured for the geometry and flow conditions relevant to the In-Vessel Retention (IVR) situation which can occur during core melting sequences in certain advanced Light Water Reactors (LWRs). CHF measurements were conducted in a flow boiling loop featuring a test section designed to be thermal-hydraulically similar to the vessel/insulation gap in the Westinghouse AP1000 plant. The effects of orientation angle, pressure, mass flux, fluid type, boiling time, surface material, and surface state were investigated. Results for water-based nanofluids with alumina nanoparticles (0.001% by volume) on stainless steel surface indicate an average 70% CHF enhancement with a range of 17% to 108% depending on the specific flow conditions expected for IVR. Experiments also indicate that only about thirty minutes of boiling time (which drives nanoparticle deposition) are needed to obtain substantial CHF enhancement with nanofluids.

Influence of an in-vessel debris bed on the heat load to a reactor vessel under an IVR condition

  • Joon-Soo Park;Hae-Kyun Park;Bum-Jin Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.180-189
    • /
    • 2023
  • We measured the heat load to a reactor vessel with and without the in-vessel debris bed under an IVR-ERVC condition. Mass transfer methodology was adopted based on heat and mass transfer analogy to achieve high Ra'H of order ~1015 with compact test rigs. We postulated the in-vessel debris bed has a flat top and particulate debris was simulated as an identical diameter spheres. We conducted experiments varying the height of the debris bed and the results showed that Nusselt numbers decreased in both uppermost and curved surfaces with the increasing bed height. Once the debris bed is formed, it acts as an obstacle to the natural convective flow, which reduces the buoyancy. The reduction of driving force results in the impaired heat transfer in both upward and downward heat transfers.

Structural assessment of reactor pressure vessel under multi-layered corium formation conditions

  • Kim, Tae Hyun;Kim, Seung Hyun;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.351-361
    • /
    • 2015
  • External reactor vessel cooling (ERVC) for in-vessel retention (IVR) has been considered one of the most useful strategies to mitigate severe accidents. However, reliability of this common idea is weakened because many studies were focused on critical heat flux whereas there were diverse uncertainties in structural behaviors as well as thermal-hydraulic phenomena. In the present study, several key factors related to molten corium behaviors and thermal characteristics were examined under multi-layered corium formation conditions. Thereafter, systematic finite element analyses and subsequent damage evaluation with varying parameters were performed on a representative reactor pressure vessel (RPV) to figure out the possibility of high temperature induced failures. From the sensitivity analyses, it was proven that the reactor cavity should be flooded up to the top of the metal layer at least for successful accomplishment of the IVR-ERVC strategy. The thermal flux due to corium formation and the relocation time were also identified as crucial parameters. Moreover, three-layered corium formation conditions led to higher maximum von Mises stress values and consequently shorter creep rupture times as well as higher damage factors of the RPV than those obtained from two-layered conditions.

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.