• Title/Summary/Keyword: In-Vehicle Communication

Search Result 1,739, Processing Time 0.029 seconds

The analysis of technology of the connected car (커넥티드 카의 기술 분석)

  • Shim, Hyun-Bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.211-215
    • /
    • 2015
  • It comes into the spotlight as the new Blue Ocean in which the connected car industry in which the car and mobile communication technology is convergence. All sorts of infortainments services connecting with the portable electronic device(Smart phone, tablet PC, and MP3 player) and car are rapidly grown. The Connected car emphasizes the vehicle connectivity with the concept that the car has communication with the around on a real time basis and it provides the safety and expedience to the operator and using the thing of Internet (IoT) in the car and supports the application, presently, the entertainment service including the real-time Navigation, parking assistant function, not only the remote vehicle control and management service but also Email, multimedia streaming service, SNS and with the platform. Intelligent vehicle network is studied as the kind according to MANET(Mobile Ad Hoc Network) for the safety operation of the cars of the road and improving the efficiency of the driving. The intelligent vehicle network is comprised for the driving information offering changing rapidly of the communication(V2V: Vehicle to Vehicle) between the car and the car, communication(V2I : Vehicle to Infrastructure) between the infrastructure and the car, and V2X (Vehicle to Nomadic).

  • PDF

A Protocol Analysis Platform for the WTB Redundancy in Train Communication Network(TCN) (철도차량 통신 네트워크(TCN)에서의 WTB 이중화에 대한 프로토콜 분석 플랫폼)

  • Choi, Seok-In;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • TCN(train communication network) standard was approved in 1999 by the IEC (IEC 61375-1) and IEEE (IEEE 1473-T) organizations to warrant a reliable train and equipment interoperability. TCN defines the set of communication vehicle buses and train buses. The MVB(multifunction vehicle bus) defines the data communication interface of equipment located in a vehicle and the WTB(wire train bus) defines the data communication interface between vehicles. The WTB and each MVB will be connected over a node acting as gateway. Also, to support applications demanding a high reliability, the standard defines a redundancy scheme in which the bus may be double-line and redundant-node implemented. In this paper we have presented protocol analysis platform for the WTB redundancy which is part of TCN system, to verify communication state of high-speed trains. As a confirmation of its validity, the technology described in this paper has been successfully applied to state monitoring and protocol verification of redundancy WTB based on TCN.

A Study on the Improvement of e-Call Services Using V2N(Vehicle to Nomadic Device) Technology (V2N(Vehicle to Nomadic Device) 기술을 이용한 e-Call 서비스 개선에 관한 연구)

  • Choi, Su-min;Shin, Yong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.321-324
    • /
    • 2018
  • Recently, the evolution of V2X (Vehicle to Everything) technology is accelerating. In particular, it can be seen that C-V2X (Cellular V2X) technology and services combined with mobile telecommunication network are developing rapidly. However, in Korea, e-Call and emergency communication services are inferior to the developed communication technologies and the proportion of vehicles arriving at Golden Hour is considerably low. Therefore, this paper designed the communication architecture with C-V2X and Android operating systems, and presented ways to improve existing e-Call services using V2N (Vehicle to Nomadic Device) communication based on it.

  • PDF

Design of V2I Based Vehicle Identification number In a VANET Environment (VANET 환경에서 차대번호를 활용한 V2I기반의 통신 프로토콜 설계)

  • Lee, Joo-Kwan;Park, Byeong-Il;Park, Jae-Pyo;Jun, Mun-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7292-7301
    • /
    • 2014
  • With the development of IT Info-Communications technology, the vehicle with a combination of wireless-communication technology has resulted in significant research into the convergence of the component of existing traffic with information, electronics and communication technology. Intelligent Vehicle Communication is a Machine-to-Machine (M2M) concept of the Vehicle-to-Vehicle. The Vehicle-to-Infrastructure communication consists of safety and the ease of transportation. Security technologies must precede the effective Intelligent Vehicle Communication Structure, unlike the existing internet environment, where high-speed vehicle communication is with the security threats of a wireless communication environment and can receive unusual vehicle messages. In this paper, the Vehicle Identification number between the V2I and the secure message communication protocol was proposed using hash functions and a time stamp, and the validity of the vehicle was assessed. The proposed system was the performance evaluation section compared to the conventional technique at a rate VPKI aspect showed an approximate 44% reduction. The safety, including authentication, confidentiality, and privacy threats, were analyzed.

Vehicle Platooning Remote Control via State Estimation in a Communication Network (통신 네트워크에서 상태 추정에 의한 군집병합의 원격제어)

  • 황태현;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.192-192
    • /
    • 2000
  • In this paper, a platoon merging is considered as a remote-controlled system with the state represented by a stochastic process. In this system, it becomes to encounter situations where a single decision maker controls a large number of subsystems, and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike classical estimation problem in which the observation is a continuous process corrupted by additive noise, there is a constraint that the observation must be coded and transmitted over a digital communication channel with finite capaci쇼. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. Using the coder-estimator sequence, the remote control station designs a feedback controller. In this paper, we introduce a stochastic model for the lead vehicle in a platoon of vehicles considering the angle between a road surface and a horizontal plane as a stochastic process. The simulation results show that the inter-vehicle distance and the deviation from the desired inter-vehicle distance are well regulated.

  • PDF

A Study on V2V Communication Environment in K-city (자율주행 실험도시(K-city) 내 V2V 통신 환경에 관한 연구)

  • Jo, Byeongchan;Kim, Donghwan;Shin, Jaekon;Kim, Sungsub;Cho, Seongwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 2021
  • K-city is an experimental area for developing self-driving cars. V2X communications such as WAVE, C-V2X and 5G are an essential technology for autonomous driving above level 4. In this paper, the research on the V2V communication environment was carried out through BSM receiving level analysis on the driving route in K-city. A stationary vehicle communicated with a test vehicle moving along urban area and suburban road in two different scenarios. The communication range and receiving levels obtained from this study will be used to develop and verify various safety scenarios using V2V communication within K-city in the future.

A study on the Analysis of Radio Characteristics about Communication Mode in a Road (공용도로에서의 통신방식에 대한 전파특성 분석 연구)

  • Choi, Gi-Do;Lim, Ki-Taek;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • Vehicular communications is system which can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. In general, vehicular communications can be used for vehicle-to-vehicle and vehicle-to-infrastructure communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments. In this paper, WAVE communication standard based on the IEEE802.11p is explained and signal characteristics in WAVE communication is introduced. Also, The H/W and S/W characteristics in Road Side Station and On Board Equipment for the Vehicle to Everything communication are analyzed. Received Signal Strength which is power of receiving signal of communication equipment is measured in test road to estimate the real WAVE communication's performance. It is shown that the implemented WAVE communication technology is satisfactory to provide ITS services.

Electromagnetic Immunity Test Environments of Advanced Vehicles with Communication Systems (첨단자동차의 전자파 내성 실험 환경에 관한 연구: 외부통신 장치를 중심으로)

  • Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.14-19
    • /
    • 2022
  • Recently, automobile industries have developed ADAS, smart cars, connected cars, automated driving systems, which communicate with outsides of a vehicle not only in uni-directional way but also in bi-directional way. It is necessary to examine the electromagnetic immunity of vehicles equipped with those communication systems. The electromagnetic immunity tests are carried out in an electromagnetic semi anechoic chamber, which is cut off from the outside electromagnetically. In this study, additional test environments were designed and tested and as a result they are shown to be effective to create test environments in an experimental chamber for electromagnetic immunity tests of vehicles equipped with communication systems.

The MLMEX Design and Implemention for Vehicle Communication Technology (차량 통신 기술을 위한 MLMEX 설계 및 구현)

  • Lee, Dae Sik;Lee, Yong Kwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.103-110
    • /
    • 2013
  • WAVE system is a vehicle communication technology. The system provides the services to prevent vehicle accidents that might occur during driving. Also, it is used to provide various services such as monitoring vehicle management and system failure. In this paper, we divide module that manages WAVE MAC state into a WSMP base MLME module and IP base module and we design and implement a parameter environment between WME module to manage the state of the WAVE system and MLMEX module to mange IP base of WAVE MAC therefore the date to be processed.Also, in order to verify the validity, we have carried out experiments to compare the speed of data processing by dividing data of 5Mbyte, 10Mbyte, 20Mbyte into the packets of 2KByte and 4KByte. Therefore, in WAVE system, the Parameter environments and data processing speed between WME and MLMEX module can be utilized in the various service of vehicle communication technology depending on the speed of data processing.

Smart Phone and Vehicle Authentication Scheme with M2M Device (M2M 기기에서 스마트폰 및 차량 인증 기법)

  • Yeo, Seong-Gwon;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • As the developing of the information technology, M2M market that is using communication between devices is growing rapidly and many companies are involved in M2M business. In this paper, the concept of telematics and vulnerabilities of vehicle network security are discussed. The convergence of vehicle and information technology, the development of mobile communication technology have improved quality of service that provided to user but as a result security threats has diverse. We proposed new business model that be occurred to the participation of mobile carriers in telematics business and we analyzed mobile radio communication network security vulnerabilities. We proposed smart phone and Vehicle authentication scheme with M2M device as a way to solve vulnerabilities.