• Title/Summary/Keyword: In-Space Propulsion

Search Result 509, Processing Time 0.031 seconds

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chung, Yong-Gahp;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.502-506
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.

  • PDF

Modeling and Simulation of Combustion Chamber Test Facility Fuel Supply System (연소기 연소시험 설비 연료 공급 시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

Development of 100, 250 N Commercial $H_2O_2$ Monopropellant Thruster for Space Launch Vehicles (발사체 자세제어를 위한 100, 250 N 급 상용 과산화수소 단일추진제 추력기 개발)

  • An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Seung;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.19-22
    • /
    • 2009
  • Design and performance evaluation of $H_2O_2$ monopropellant thrusters to be used at attitude control of space launch vehicles were presented in this paper. Flight model thrusters were designed after two reactors for 100, 250 Newton were conformed at engineering model. Each thruster was evaluated by measurement of characteristic velocity, thrust, specific impulse, and pulse response times.

  • PDF

Development of a Low Power Micro-Ion Engine Using Microwave Discharge

  • Koizumi, Hiroyuki;Kuninaka, Hitoshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.842-848
    • /
    • 2008
  • In this study, we propose a novel micro-ion engine system. Single plasma source is used for both ion beam source and neutralizing electron source. By changing the electrical connection, either operation can be switched. This micro-ion engine system gives translation motion and attitude control to microspacecraft. The major objective of this study is verification of our concept. Small plasma source of 20 mm diameter was developed. Plasma was sustained by microwave power. Using this plasma source, ion beam extraction and electron emission was successively demonstrated.

  • PDF

The Cooling Characteristics of a Gas Deflector Using Water Spray Cooling System in Launch Pad (물 분사 냉각시스템을 이용한 발사대 화염유도로의 냉각특성)

  • Lee, Kwang-Jin;Chung, Yong-Gahp;Cho, Nam-Kyung;Nam, Jung-Won;Jung, Il-Hyung;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.756-762
    • /
    • 2011
  • A gas deflector cooling system plays an important role in the suppression of shock wave generated during the ignition of a launch vehicle engine. Also, this system decrease a large vibration of damaging the payload and structure of the launch vehicle. The gas deflector cooling system in the launch pad of NARO space center was constructed to directly inject water into the plume of the launch vehicle engine. The flight test result of NARO space launch vehicle showed that this method had a good performance on the viewpoint of cooling the gas deflector.

  • PDF

STSAT-3 Hall Thruster Propulsion System Development (과학기술위성 3호 홀추력기 추진계 개발)

  • Cho, Hee-Keun;Ryu, Kwang-Sun;Cha, Won-Ho;Lee, Jong-Sup;Seo, Mi-Hee;Choi, Won-Ho;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.834-841
    • /
    • 2010
  • The STSAT-3 (science and technology satellite) is the first satellite whose entire structure was made of composite materials in Korea and it will be launched later in 2011. As like other small satellites, it is also equipped with several advanced instruments whose major objectives focused on the scientific tests in space. The HPS (hall thruster propulsion system) using xenon gas as a propellant has been developed and its overall ground tests were conducted. This research emphasizes on the technologies and procedure applied to the development of the entire HPS and its function and environment tests.

A Survey on Health Monitoring and Management Technology for Liquid Rocket Engines (액체로켓엔진의 건전성 감시및 관리 기법에 관한 현황 분석)

  • Cha, Jihyoung;Ha, Chulsu;O, Suheon;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.50-58
    • /
    • 2014
  • This paper is about a short survey on the recent research activities regarding health monitoring and management for liquid rocket engines. For this, we investigate the precedent techniques developed in advanced space-industry countries which are USA, EU, Russia, Japan and China. Particularly, we focus on the technologies applied in China, a recently joined to the advanced space-industry countries in this field. Then we discuss some important points to be considered to apply to the development of the Korea Space Launch Vehicle KSLV-II and other related projects.

The Review of Saturn V 1st Stage (S-IC) Propulsion System (Saturn V 발사체 1단(S-IC) 추진기관 시스템 연구)

  • Hong, Yonggi;Kim, Cheulwoong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • It had been almost a half century since Apollo Mission was ended. However, in these days, a lot of researches are being conducted for restoration and making improvements in technologies used in Saturn V rocket's development. This study reviews the first stage of Saturn V rocket(S-IC), from development history to technologies in various subsystems such as engine purge system, POGO suppression system, hydraulic and pneumatic control system, propellant dispersion system, telemetry system and retrorocket system. Understandings of S-IC stage's operation systems would be helpful in understanding of launch vehicle system and reduction of time and cost in future development process.

A STUDY ON THE PRESSURE BEHAVIOR INSIDE PROPELLANT LINE OF SATELLITE (인공위성 연료배관의 유압특성 연구)

  • Choi, Jin-Chul;Kim, Jeong-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.207-214
    • /
    • 2002
  • One of the way to derive design parameters of the fuel feeding system in satellite propulsion system is to analyze unsteady flow of liquid propellant (hydrazine). During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a set of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves we damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and pressure behavior inside the propellant line obtained through some governing parameter variation is presented in this work.

A Study of Control Algorithm for Propulsion System (열차 추진제어장치의 알고리즘에 관한 연구)

  • Choi, Jae-Ho;Kim, Hyung-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.51-56
    • /
    • 2007
  • In this paper, control schemes are developed for a propulsion system(Converter/Inverter) in electrical train. A robust controller for PWM converter is proposed. The converter controller consists of a PI controller for DC output voltage and a current controller using error-space approach for maintaining the sinusoidal current waveform and unity power factor. This proposed method is based on characteristic ratio assignment(CRA) method which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. Inverter system is controlled by vector control and slip frequency control. At low speed region, vector control scheme is applied to control instantaneous torque and slip frequency control is performed under overmodulation region and one pulse mode. Because output voltage of converter contains harmonics ripple at twice input ac line frequency, control scheme is developed to reduce the pulsating torque current. The performance of propulsion system will be verified by simulation and prototype experimental results.