• Title/Summary/Keyword: In-SAR

Search Result 1,476, Processing Time 0.028 seconds

Characteristics of Water Quality in Upper Stream Watershed of Dongjin River (동진강 상류하천 유역의 수질특성)

  • Son, Jae-Gwon;Park, Jong-Min;Choi, Jin-Kyu;Song, Jae-Do
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.2 s.19
    • /
    • pp.19-28
    • /
    • 2003
  • It is the purpose of this study to investigate the change of stream water quality in upper stream of Dongjin river, and to give the basic information for the conservation of water quality. Water samples were taken periodically at 9 sampling sites during 8 months from March to October in 2002. The results of this study were as follows : 1. The water temperature and pH of stream water were ranged $9.0{\sim}29.4^{\circ}C,\;6.48{\sim}9.33$, respectively. The COD values of stream water was ranged from 0.60 to 19.06. The contents of T-N and T-P mainly affected by the livestock wastes, and agricultural activity were $1.88{\sim}6.74\;mg/L$, ND(not deleted)${\sim}0.50\;mg/L$, respectively. 2. The SS, DO and BOD values of stream water were ranged $0.4mg/L{\sim}274.0mg/L$, $0.5{\sim}6.0\;mg/L$, and $7.3{\sim}13.7\;mg/L$ respectively. 3. The cation is one of the important components in analysis of stream water quality. The contents of analysis, $Ca^{++},\;Mg^{++},\;Na^+$ and $K^+$ were ranged $1.96{\sim}11.08\;mg/L$, $1.21{\sim}6.16\;mg/L$, $3.38{\sim}18.44\;mg/L$, $1.12{\sim}7.96\;mg/L$, respectively. SAR was ranged $0.31{\sim}1.63$ below 2.0. The contents of cation showed in the order $Na^{++}>Ca^{++}>K^+>Mg^+$. 4. The contents of heavy metal Zn, Cu, and Pb were $ND{\sim}0.071\;mg/L$, $ND{\sim}0.012\;mg/L$, and $ND{\sim}0.043\;mg/L$, respectively. Cd was not detected in all samples. 5. As a result of these researches showed water quality in upper stream watershed of Dongjin river more affected by livestock wastes and living sewage than agricultural activity.

Early Estimation of Rice Cultivation in Gimje-si Using Sentinel-1 and UAV Imagery (Sentinel-1 및 UAV 영상을 활용한 김제시 벼 재배 조기 추정)

  • Lee, Kyung-do;Kim, Sook-gyeong;Ahn, Ho-yong;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.503-514
    • /
    • 2021
  • Rice production with adequate level of area is important for decision making of rice supply and demand policy. It is essential to grasp rice cultivation areas in advance for estimating rice production of the year. This study was carried out to classify paddy rice cultivation in Gimje-si using sentinel-1 SAR (synthetic aperture radar) and UAV imagery in early July. Time-series Sentinel-1A and 1B images acquired from early May to early July were processed to convert into sigma naught (dB) images using SNAP (SeNtinel application platform, Version 8.0) toolbox provided by European Space Agency. Farm map and parcel map, which are spatial data of vector polygon, were used to stratify paddy field population for classifying rice paddy cultivation. To distinguish paddy rice from other crops grown in the paddy fields, we used the decision tree method using threshold levels and random forest model. Random forest model, trained by mainly rice cultivation area and rice and soybean cultivation area in UAV image area, showed the best performance as overall accuracy 89.9%, Kappa coefficient 0.774. Through this, we were able to confirm the possibility of early estimation of rice cultivation area in Gimje-si using UAV image.

Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery (광학 영상의 구름 제거를 위한 조건부 생성적 적대 신경망과 회귀 기반 보정의 결합)

  • Kwak, Geun-Ho;Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1357-1369
    • /
    • 2022
  • Cloud removal is an essential image processing step for any task requiring time-series optical images, such as vegetation monitoring and change detection. This paper presents a two-stage cloud removal method that combines conditional generative adversarial networks (cGANs) with regression-based calibration to construct a cloud-free time-series optical image set. In the first stage, the cGANs generate initial prediction results using quantitative relationships between optical and synthetic aperture radar images. In the second stage, the relationships between the predicted results and the actual values in non-cloud areas are first quantified via random forest-based regression modeling and then used to calibrate the cGAN-based prediction results. The potential of the proposed method was evaluated from a cloud removal experiment using Sentinel-2 and COSMO-SkyMed images in the rice field cultivation area of Gimje. The cGAN model could effectively predict the reflectance values in the cloud-contaminated rice fields where severe changes in physical surface conditions happened. Moreover, the regression-based calibration in the second stage could improve the prediction accuracy, compared with a regression-based cloud removal method using a supplementary image that is temporally distant from the target image. These experimental results indicate that the proposed method can be effectively applied to restore cloud-contaminated areas when cloud-free optical images are unavailable for environmental monitoring.

A Study on the Environmental Application of Image Radar for Expanding the Use of Next Generation Medium Satellite 5 (차세대중형위성 5호 활용 확대를 위한 영상레이더의 환경분야 활용 방안 연구)

  • Han, Hyeon-gyeong;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1251-1260
    • /
    • 2019
  • Existing environmental spatial information, which has been concentrated on spatial resolution, has limitations in solving realistic environmental problems that must be accompanied by physical and chemical characterization. Accordingly, there is a need for an image radar capable of identifying physical characteristics of an object regardless of weather conditions, day and night, and sunlight. Image radar is used in various fields in the United States and Europe. The next generation of medium-sized satellite No. 5 in Korea, which is under development with the aim of monitoring water disasters, is also looking for ways to expand the scope to various applications based on the existing application range. To this end, we analyzed domestic and international papers (100 works) using image radar, and reviewed KEI 2016 report, domestic papers, and foreign papers. Based on this, various environmental issues were summarized and the effects of when the image radar was used were analyzed and land cover was selected as an environmental issue. In the future, we will embody the technology to improve the accuracy of the land cover map, which is the environmental issue selected in this study, and build the foundation system for the stable use of the land cover map.

Analysis on Technical Specification and Application for the Medium-Satellite Payload in Agriculture and Forestry (농림업 중형위성 탑재체 개발을 위한 기술 사양 및 활용 분석)

  • Kim, Bumseung;Kim, Hyeoncheol;Song, Kyoungmin;Hong, Sukyoung;Lee, Wookyung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.117-127
    • /
    • 2015
  • Recently, research and development on satellite payloads are being developed such as the optical sensor, SAR etc. Satellite image for earth observation is being utilized both domestically and abroad. Advanced satellite payload technology has led to the collection and analysis of satellite images relying on the optical sensor. Currently, related organizations such as RDA(the Rural Development Administration) are collectively collaborating to plan a national project to develop a medium-sized satellite based on Korea's domestic technology independently. This paper investigated the cases of the past research on application of satellite images for agriculture and analyzed the technical specifications for satellite payload in each area of such application. Based on the results of the past surveys and consultation studies among local experts in satellite image application, we analyzed the current trends, plans and applications of domestic and overseas R&D in satellite payloads for earth observation in agriculture, and proposed the appropriate technical specifications for developing a future medium-sized satellite for agriculture. The proposed specifications were then incorporated into a simulated satellite to examine its performance to observe the Korean farming areas. The authors anticipate that the findings of this paper will form a useful technical basis for providing the appropriate specifications for developing future medium-sized satellite payloads to be used in agriculture and forestry, and enabling the end users to efficiently utilize the satellite.

Physical-chemical Properties and Phosphorus Adsorption Characteristics of Soils in Baicheng, China (중국 길림성 백성지역 흑개토의 이화학성 및 인산 흡착 특성)

  • Jin, Sheng-Ai;Lee, Sang-Mo;Choi, Woo-Jung;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.92-96
    • /
    • 2001
  • Soil physical-chemical properties and phosphorous adsorption characteristics were investigated to obtain the informations of the appropriate fertilization and soil management in Baicheng region, China, where agricultural circumstances at present forces to consider the use of land for crop production. Soils were collected from one uncultivated and three cultivated lands on August 1993. Soil $_PH$ was very higher in uncultivated land than in cultivated land, their values were 10.2 and 7.4, respectively. Regardless of cultivation, soil organic matter contents were below 2%, and concentrations of available soil phosphorus expressed as Bray 1 P and Olson P were less than 10 mg P $kg^{-1}$, however, cation exchange capacity was higher than 20 cmol(+) $kg^{-1}$. For uncultivated soil, the values of exchangeable sodium percent and calcium saturation percent were higher than 100%. The major cation of soil saturation paste extracts was Na regardless of land use type. Based on electrical conductivity and sodium adsorption ratio of saturation paste extracts, uncultivated soil was classified as saline-sodic soil and cultivated soil was classified as sodic or normal soil. The maximum adsorption capacity of phosphorus calculated by Langmuir isotherm ranged from 406 to 521 mg P ,$kg^{-1}$. The constraints of soils in Baicheng regions for agricultural cops werw high salt concentration, unfavorable soil chemical composition such as low concentration of available phosphorous, and poor drainage due to soil dispersion by high Na concentration. Therefore, the soil in Baicheng region, need the application of phosphorus fertilizer to increase the soil fertility and the proper soil management to improve the soil physical property especially permeability and soil structure.

  • PDF

Salinity Effects on the Hydraulic Conductivity of Uplands (밭토양(土壌)의 수리전도도(水理伝導度)에 대(対)한 염류효과(塩類効果))

  • Park, Chang-Seo;O'Connor, George A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 1983
  • Laboratory determinations of saturated hydraulic conductivity were conducted with four soils varying in texture from sand to clay and with five waters with different salinity level. The waters varied in total dissolved solids from 1,250 to $15,000mg/{\ell}$ and in SAR from 16 to 57 and were representative of saline waters in New Mexico. Saturated hydraulic conductivities of the soils were not significantly affected by water salinity if these waters were the sole source of irrigation water. However, small additions of distilled water, assuming simulated to rain, to soils previously equilibrated with the saline waters significantly decreased soil permeability. Dispersion and short or long-distance transport of clay apparently clogged conducting pores when distilled water was introduced. Swelling was an important mechanism in reducing soil permeability only in the clay soil. The data suggest that, when saline water is the dominant irrigation source and is supplemented by rain, (1) all saline waters could be used on very sandy soils, (2) no saline waters should be used on very heavy soils, and (3) slightly saline, but not very saline, waters could be used on medium-textured soils.

  • PDF

Structure-activity relationships on the herbicidal activity of the 2,3-dihydro-2,2,4,6,7-pentamethylbenzofuran-5-yl substituents in 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one derivatives (5-Benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hyoxycyclohex-2-en-1-one 유도체 중 2,3-dihydro-2,2,4,6,7-pentamethylbenzofuran-5-yl 치환체들의 제초활성에 관한 구조-활성관계)

  • Sung, Nack-Do;Song, Jong-Hwan;Kim, Hyoung-Rae
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.47-51
    • /
    • 2000
  • A some of synthesized 2,3-dihydro-2,2,4,6,7-pentamethylbenzofuran-5-yl substituents in 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one derivatives as substrates were found to show herbicidal activity against rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) with post emergence under submerged conditions. The substrate with $R_{1}$=methyl substituents, $1{\sim}5$ showed the higher herbicidal activity to the seed, 3 leaf stage of rice plant and barnyard grass. The structure activity relationships (SARs) on the herbicidal activity of $R_{1}$ and $R_{2}$ on the azomethine bond in substrate were analysized. In the condition of $R_{1}$ groups are same, the herbicidal activity against 3 leaf stage of rice plant were governed by the optimal hydrophobicity $(logP)_{opt.}=4.57$. Whereas, in the case of barnyard grass, the herbicidal activities were largely dependent upon the steric effect, $B_{2}$ constant than hydrophobicity. In order to take the selective herbicidal activity between rice plant and barnyard grass, it is assumed that the (S) should be a round shape with higher hydrophobicity (logP>4.57) than optimal value. Also, the $R_{1}$ groups must be small and the $R_{2}$ groups are advisable to be unsaturate.

  • PDF

Implementation of Spatial Augmented Reality Using Fog Screen (포그 스크린을 이용한 공간증강현실(SAR) 구현)

  • Park, Yoenyong;Jung, Moonryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.43-54
    • /
    • 2019
  • In this paper, we review the applicability of fog screen to implement 'Spatial Augmented Reality' which displays the image on the whole space of real space or in real space by separating display equipment and user, in contrast to the traditional Augmented Reality. Through three exhibitions and one performance, we confirmed t hat the fog screen, which can be passed through, is a suitable material for implementing the Spatial Augment ed Reality. We found that the hologram production was easier than before because of fog screen. Through the questionnaire survey conducted on performers along with the exhibition, we found that only about half of people know what a fog screen is, and about 10% of the total respondents saw the fog screen. In order to investigate the effect of fog screen on the surrounding space, we conducted an experiment to observe the change of humidity according to the time and distance in the Children's Culture Center of the Asian Culture Center. We found that the humidity within a radius of 5m around the fog screen could increase by 2~3%($6,400m^3$ standard). Thus we provided some safety requirement with fog screen when works made of materials vulnerable to moisture such as paint, paper, and wood are exhibited at the same time with fog screen in the exhibition hall.

Estimation of the Amount of Mining and Waste Rocks at Musan Mine in North Korea Using a Historical Map and SRTM and Copernicus Global Digital Elevation Models (조선지형도와 SRTM 및 Copernicus 글로벌 수치지형모델을 이용한 북한 무산광산의 채광량 및 폐석 적치량 추정)

  • Yongjae Chu;Hoonyol Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.495-505
    • /
    • 2023
  • The Musan mine, situated in Musan County, Hamgyong Province, North Korea, stands as a prominent open-pit iron mine on the Korean Peninsula. This study focuses on estimating the mining and dumping activities within the Musan mine area by analyzing digital elevation model (DEM) changes. To calculate the long-term volume changes in the Musan mine, we digitized and converted the 1:200,000-scale third topographic map of the Joseon published in 1918 and compared with interferometric synthetic aperture radar (InSAR) DEMs, including Shuttle Radar Topography Mission DEM (2000) and Copernicus DEM (2011-2015). The findings reveal that over a century, Musan mine yielded around 1.37 billion tons of iron ore, while approximately 1.06 billion tons of waste rock were dumped. This study is particularly significant as it utilizes a historical topographic map predating the full-scale development of Musan mine to estimate a century's mining production and waste rock deposition. It is expected that this research provides valuable insights for future investigation of surface change of North Korea where the acquisition of in situ data remains challenging.