• Title/Summary/Keyword: In-Plane Mode

Search Result 775, Processing Time 0.029 seconds

Numerical Study on Seismic Behavior of a Three-Story RC Shear Wall Structure (3층 전단벽 구조물의 지진응답에 관한 수치해석)

  • Park, Dawon;Choi, Youngjun;Hong, Jung-Wuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.111-119
    • /
    • 2021
  • A shear wall is a structural member designed to effectively resist in-plane lateral forces, such as strong winds and earthquakes. Due to its efficiency and stability, shear walls are often installed in residential buildings and essential facilities such as nuclear power plants. In this research, to predict the results of the shaking table test of the three-story shear wall RC structure hosted by the Korea Atomic Energy Research Institute, three types of numerical modeling techniques are proposed: Preliminary, Calibrated 1, and Calibrated 2 models, in order of improvement. For the proposed models, an earthquake of the 2016 Gyeongju, South Korea (peak ground acceleration of 0.28 g) and its amplified earthquake (peak ground acceleration of 0.50 g) are input. The response spectra of the measuring points are obtained by numerical analysis. Good agreement is observed in the comparisons between the experiment results and the simulation conducted on the finally adopted numerical model, Calibrated 2. In the process of improving the model, this paper investigates the influences of the mode shape, material properties, and boundary conditions on the structure's seismic behavior.

Asymmetric Dipole Antenna for Pen-Type Wireless Presenter Having Metallic Cylinder Case as a Radiating Element (금속 원통 케이스를 방사소자로 활용한 펜타입 무선 프리젠터용 비대칭 다이폴 안테나)

  • Bang, Ji Hoon;Kim, Young Min;Yoo, Tae Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.883-891
    • /
    • 2016
  • In this paper, we propose an asymmetric dipole antenna utilizing the metal case as a ground radiator for a pen-type wireless presenter which operates in the ISM frequency band(2.4~2.48 GHz). A normal mode helix mounted on the top end of the long metallic cylinder case which acts as the ground plane takes the form of the asymmetric dipole structure in the proposed antenna. The metallic cylinder case which performs as a radiating element increases the inherent narrow bandwidth and low gain of the helix. The effects of the hand contacts with the metal case on the antenna performance are measured and analyzed with a specially designed human phantom. Experimental results show that the -10 dB return loss bandwidth of the proposed antenna in free space(no hand contact) is 200 MHz that ranges from 2.3 to 2.5 GHz and the maximum gain is measured to be 5 dBi. Under the normal operating condition where the metal case is contacted with a human hand, the bandwidth is 480 MHz from 2.24 to 2.72 GHz. The maximum gain is 2 dBi, lowered by 3 dB due to the hand contact.

Efficient Analysis for a Three-Dimensional Multistory Structure with Wings (여러 Wing들로 구성된 3차원 구조물의 효율적인 해석모델)

  • Moon, Seong Kwon;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.429-438
    • /
    • 1994
  • Three-dimensional analyses of multistory structures with wings using finite element models require tedious input data preparation, longer computation time. and larger computer memory. So this study lays emphasis on the development of efficient analysis models for a three-dimensional multistory structure with wings, including in-plane deformation of floor slabs. Since a three-dimensional multistory structure with wings is regarded as a combination of wing structures and their junction in this study, the proposed analysis models are easily applicable to multistory structures with plans in the shape of letters Y, U, H, etc. Dynamic analyses results obtained using proposed models are in excellent agreement to those acquired using three-dimensional finite element models in terms of natural vibration periods, mode shapes and displacement time history.

  • PDF

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube (임피던스 튜브 내에 설치된 평판의 음파투과해석)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • In this paper, derivation of the STL (Sound Transmission Loss) of a square plate installed in an impedance tube is discussed using an analytic method. Coupled motion of the plate vibration and acoustic field is considered. Vibration of the plate and pressure field inside the tube are expressed in terms of the infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results. When the boundary of the plate is clamped, vibration mode is assumed as a multiplication of the beam modes corresponding to the crosswise directions. The natural frequencies of the clamped plate are calculated using the Rayleigh-Ritz method. It is found that the STL shows a dip at the lowest natural frequency of the plate, and increases as the frequency decreases below the natural frequency. Comparison of the result in this paper with the STL obtained by measurements and FE computations in the reference shows an excellent agreement.

Centrifugal Modelling on the Displacement Mode of Unpropped Diaphragm Wall with Surcharge (과재하중이 있는 Unpropped Diaphragm Wall의 변위양상에 관한 원심모델링)

  • 허열;이처근;안광국
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.135-145
    • /
    • 2004
  • In this study, the behavior of unpropped diaphragm walls on decomposed granite soil was investigated through centrifugal and numerical modelling. Centrifuge model tests were performed by changing the interval distance of surcharge. Excavation was simulated during the centrifuge tests by operating a solenoid valve that allowed the zinc chloride solution to drain from the excavation. In these tests, ground deformation, wall displacement and bending moment induced by excavation were measured. FLAC program which can be able to apply far most geotechnical problems was used in the numerical analysis. In numerical simulation, Mohr-Coulomb model fur the ground model, an elastic model for diaphragm wall were used for two dimensional plane strain condition. From the results of model tests, failure surface was straight line type, the ground of retained side inside failure line had downward displacement to the direction of the wall, and finally the failure was made by the rotation of the wall. The angle of failure line was about 67 ∼ 74$^{\circ}$, greater than calculated value. The locations of the maximum ground settlement obtained from model tests and analysis results are in good agreements. The displacement of wall and the change of the embedment depth is likely to have linear relationship.

A New Approach with Combined Stereotactic Trans-multiarc Beams for Radiosurgery Based on the Linear Accelerator : Photon Knife (입체적횡다증회전조사를 병합한 방사선수술의 새로운 접근 : 포톤나이프)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.14 no.2
    • /
    • pp.149-158
    • /
    • 1996
  • Purpose : To get an accute steepness of dose gradients at outside the target volume in intracranial lesion and a less limitation of beam selection avoiding the high dose at normal brain tissue, this Photon Knife Radiosurgery System was developed in order to provide the three-dimensional dose distribution through the reconstruction of CT scan and the combined stereotactic trans-multiarc beam mode based on linear accelerator photon beam. Materials and methods : This stereotactic radiosurgery, Photon Knife based on linear accelerator photon beam was provided the non-coplanar multiarc and trans-multiarc irradiations. The stereotactic trans-multiarc beam mode can be obtained from the patient position in decubitus. This study has provided the 3-dimensional isodose curve and anatomical structures with the surface rendering technique. The dose distribution from the combined two trans-multiarcs (2M 2TM) was compared to that of four non-coplanar multiarcs (4M) with same collimator size of 25 mm in a diameter and total gantry movements. Results : In this study, it shows that the dose distributions of stereotactic beam mode are significantly depended on the selected couch and gantry angle in same collimator size. Practical dose distribution of combined stereotactic trans-multiarc beam has shown a more small rim thickness than that of the non-coplanar multiarc beam mode in axial, sagittal and coronal plane in our study. 3-Dimensional dose line displayed with surface rendering of irregular target shape is helpful to determine the target dose and to predict the prognosis in follow-up radiosurgery. Conclusions : 3-Dimensional dose line displayed with surface rendering of irregular target shape is essential in stereotactic radiosurgery. This combined stereotactic trans-multiarc beam has shown a less limitation of the selection couch and gantry beam angles for the target surrounding critical organs. It has shown that the dose distribution of combined trans-multiarc beam greatly depended on the couch and gantry angles. In our experiments, the absorbed dose has been decreased to $27%$ / mm in maximum at the interval of $50\%$ to $80\%$ of isodose line.

  • PDF

Characteristics on the Occurrence of Oxidized Copper at Suparaura, Peru: Preliminary Study (페루 수빠라우라 산화동 산출지의 특성: 예비연구)

  • Kim, Eui-Jun;Heo, Chul-Ho;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Geological survey on the occurrence of copper oxide in Suparaura area around Abancay in the south-central part of Peru had been carried out. Geology of the area is composed of granitoids such as granodiorite, tonalite and andesitic porphyry related to Tertiary igneous activity, Ferrobamba formation with Cretaceous limestone and sandstone in descending order. Red sandstone is widely distributed and emplaced with their attitude of $N70^{\circ}W$ strike and $60^{\circ}NE$ dip. Copper oxides were mineralized along the bedding plane of red sandstone with maximum width of 30 cm. Ore-body structure bounding red sandstone strata have different occurrence characteristics with generally known porphyry system in terms of alteration, mineral assemblage and occurrence mode. Therefore, it is thought to be stratiform sediment-hosted copper (SSC) deposits genetically corresponding to Mississippi-valley type from preliminary study.

An adaptive frequency-selective weighted prediction of residual signal for efficient RGB video compression coding (능률적 RGB 비디오 압축 부호화를 위한 잔여신호의 적응적 주파수-선택 가중 예측 기법)

  • Jeong, Jin-Woo;Choe, Yoon-Sik;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.527-539
    • /
    • 2010
  • Most video coding systems use YCbCr color space for their inputs, but RGB space is more preferred in the field of high fidelity video because the compression gain from YCbCr becomes disappeared in the high quality operation region. In order to improve the coding performance of RGB video signal, this paper presents an adaptive frequency-selective weighted prediction algorithm. Based on the sign agreement and the strength of frequency-domain correlation of residual color planes, the proposed scheme adaptively selects the frequency elements as well as the corresponding prediction weights for better utilization of inter-plane correlation of RGB signal. Experimental results showed that the proposed algorithm improves the coding gain of around 13% bitrate reduction, on average, compared to the common mode of 4:4:4 video coding in the state-of-the-art video compression standard, H.264/AVC.

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • 김기태;서정;조윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.19-19
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test(τ/σ= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio τ/σ. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.