• Title/Summary/Keyword: In-Flight Simulation

Search Result 808, Processing Time 0.025 seconds

A real time performance evaluation technique of guidance and control systems (유도조종장치의 실시간 성능평가 기법)

  • 김태연;양태수;김영주;이종하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.165-170
    • /
    • 1992
  • In this paper, the Hardware-In-The-Loop Simulation(HILS) of missile systems are studied. The HILS is an effective performance evaluation technique that bridges the simulation fidelity gap between analytic all-digital simulations and actual flight tests of missile systems. The HILS may be required to perform system integration tests, performance evaluation at system or subsystem level. Major elements of this HILS facility will include the flight table, simulation computers, I/O computer and peripheral equipments. HILS of missile systems typically involve computer modeling of flight dynamics coupled with a hardware guidance and control(G/C) systems. This paper describes a real time performance evaluation technique of a G/C system, Development of a HILS for a Autopilot of SAM G/C will be used as an example.

  • PDF

A Study on UAV Flight Control System HILS Test Environment (무인항공기 비행제어 HILS 시험환경 연구)

  • Byun, Jinku;Hur, Gi-Bong;Lee, KwangHyun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.316-323
    • /
    • 2016
  • A UAV(Unmanned Aerial Vehicle) flies along pre-programed navigation points(in-flight, take-off, or landing) automatically without pilot input. Even though UAVs fly differently from general piloted aircraft as the pilot controls the aircraft from a ground station through means of a data-link system. Occasionally, the data-link connection can be lost for any number of reasons, in which case, the FLCC(Flight control Computer) must automatically switch to autopilot to continue flying. Hence, the FLCC is a flight-critical component that must be throughly tested and validated. This paper discusses the development of a HILS(Hardware in the Loop Simulation) test environment designed to simulate real flight conditions to verify the FLCC satisfies flying quality requirements and maintains robustness despite any potential malfunctions or emergency situations.

A meta-analytic study on flight data monitor of pilot's flight deviation parameters by flight simulation (비행시뮬레이션을 통한 비행규격 이탈의 메타분석)

  • Sin, Hyon-Sam;Song, Byung-Heum;Lim, Se-Hoon;Byeon, Soon-Cheol
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.63-71
    • /
    • 2008
  • This study was conducted with respect to the causal factors revealed through the investigation of the recent airlines aircraft crash accident which occurred while aircraft was on the climb-out or on the final approach. This study also highlighted the importance of flight deviation and exceedance occurrences in consideration of Flight Operational Quality Assurance Program(FOQA). Twenty airline pilots participated in the flight experiment to perform ten(10) sets of simulated approaches and landings. As a result, Twelve(12) kinds of deviation events were discovered. In this respect, The FOQA program must be fully implemented to prevent any flight safety incident under the auspices of the Korea domestic aviation community as well.

Development of Hardware Design Process Enhancement Tool for Flight Control Computer using Modeling and Simulation (M&S 기반의 비행조종컴퓨터 하드웨어 설계 프로세스 개선을 위한 툴 개발)

  • Kwon, Jong-Kwang;Ahn, Jong-Min;Ko, Joon-Soo;Seung, Dae-Beom;Kim, Whan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1036-1042
    • /
    • 2007
  • It is rather difficult to improve flight control computer(FLCC) hardware(H/W) development schedule due to lack of commercial off-the-self(COTS) tools or target specific tools. Thus, it is suggested to develop an enhanced process utilizing modeling, simulation and virtual reality tools. This paper presents H/W design process enhancement tool(PET) for FLCC design requirements such as FLCC input/output(I/O) signal flow, I/O fault detection, failure management algorithm, circuit logic, PCB assembly configuration and installation utilizing simulation and visualization in virtual space. New tool will provide simulation capability of various FLCC design configuration including shop replaceable unit(SRU) level assembly/dis-assembly utilizing open flight format 3-D modeling data.

Guidance and Control Algorithm for Waypoint Following of Tilt-Rotor Airplane in Helicopter Flight Mode (틸트로터 항공기의 경로점 추종 비행유도제어 알고리즘 설계 : 헬리콥터 비행모드)

  • Ha, Cheol-Keun;Yun, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with an autonomous flight guidance and control algorithm design for TR301 tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation purpose. The objective of this study is to design autonomous flight algorithm in which the tilt-rotor airplane should follow the given waypoints precisely. The approach to this objective in this study is that, first of all, model-based inversion is applied to the highly nonlinear tilt-rotor dynamics, where the tilt-rotor airplane is assumed to fly at helicopter flight mode(nacelle angle=0 deg), and then the control algorithm, based on classical control, is designed to satisfy overall system stabilization and precise waypoint following performance. Especially, model uncertainties due to the tiltrotor model itself and inversion process are adaptively compensated in a simple neural network(Sigma-Phi NN) for performance robustness. The designed algorithm is evaluated in the tilt-rotor nonlinear airplane in helicopter flight mode to analyze the following performance for given waypoints. The simulation results show that the waypoint following responses for this algorithm are satisfactory, and control input responses are within control limits without saturation.

Precise Distribution Simulation of Scattered Submunitions Based on Flight Test Data

  • Yun, Sangyong;Hwang, Junsik;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.108-117
    • /
    • 2017
  • This paper presents a distribution simulation model for dual purpose improved conventional munitions based on flight test data. A systematic procedure for designing a dispersion simulation model is proposed. A new accumulated broken line graph was suggested for designing the distribution shape. In the process of verification and simulation for the distribution simulation model, verification was performed by first comparing data with firing test results, and an application simulation was then conducted. The Monte Carlo method was used in the simulations, which reflected the relationship between ejection conditions and real distribution data. Before establishing the simulation algorithm, the dominant ejection parameter of the submunitions was examined. The relationships between ejection conditions and distribution results were investigated. Five key distribution parameters were analyzed with respect to the ejection conditions. They reflect the characteristics of clustered particle dynamics and aerodynamics.

A Study on QTG(Qualification Test Guide) Generation for a Flight Training Device to be Qualifiable at FAA Level 5 (X-Plane 기반 비행훈련장치의 FAA Level 5 FTD(Flight Training Device) 인증을 위한 QTG(Qualification Test Guide) 생성방법 연구)

  • Kim, Il-Woo;Park, TaeJun;Yoon, SukJun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1035-1042
    • /
    • 2016
  • By using commercial flight simulation game engine, X-Plane, we have studied QTG(Qualification Test Guide) generation that can satisfy FTD level 5. Flight model is SR-20 of Cirrus. In list of QTG, There are some items to measure control forces. therefore, we have installed CLS(Control Loading System) to flight control devices in order to make it possible to measure control forces. We made Autopilot function externally to make flight model in trim conditions because X-Plane don't provide internal trim routine function. In addition to develop an algorithm, it can automatically perform the test. To avoid the inconvenience to control as it was to be carried out in same conditions. In case of FTD level 5, it is possible to use alternative data sources not only real flight data. By using these alternative data sources, all test results satisfy a scope given by CFR Part 60.

System Integration for M20J Simulator Develoment (M20J 시뮬레이터 개발을 위한 시스템 통합)

  • Hong, S.P.;Kim, Y.H.;Chung, S.H.;Baek, J.H.;Hwang, S.C.;Hwang, M.S.;Kim, C.Y.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.7 no.1
    • /
    • pp.19-29
    • /
    • 1999
  • This paper proposes a system intergration method for M20J flight simulator development. The simulator consists of three modules. The first module is for flight dynamics simulation, and the second module is for avionic systems and flight instrument and the last module is for interface card which connects PC and input devices using rotary encoders and switches. Two computers are equipped in the simulator for instructor and trainee. An instructor can give a mission to a trainee, and control the flight simulation options through RS-232C serial port. Also, the instructor can monitor the training results of the trainee.

  • PDF

Risk Assessment of a Drone Under the Gust and its Precise Flight Simulation (드론의 외풍 환경 비행 안전성 평가 및 정밀 시뮬레이션)

  • Lee, DongYeol;Park, SunHoo;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.173-180
    • /
    • 2022
  • The operation and transportation environment for an unmanned aerial vehicle will be completely different from those for the conventional air and ground transportation. The requirement for a traffic management system for its safe operation has been emerging. Accordingly, investigation is being conducted to analyze the danger that unmanned aerial vehicle may encounter during the flight and to provide the countermeasure by the simulation. When the drones operate in an urban environment, they may be affected by the wind around the building. Thus it is essential to predict the influence of the gust and analyze the resulting risk. In this paper, a method for evaluating the safety for a flight mission under the gust is suggested. By using the precise 6-degree-of-freedom flight simulation that is capable of simulating the gust condition, possible deviation from the pre-planned flight path in terms of the attitude orientation will be predicted. A method of quantifying the probability of the flight mission failure will also be presented.

Fusion Tracking Filter for Satellite Launch Vehicles (위성발사체 궤도추정을 위한 융합필터 연구)

  • Ryu, Seong Sook;Kim, Jeongrae;Song, Yong Kyu;Ko, Jeonghwan
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • The flight safety system for the satellite launch vehicles is required in order to minimize the risk due to launch vehicle failure. For prompt and reliable decision of flight termination, the flight safety system usually uses multiple sensors to estimate launch vehicle's flight trajectory. In that case, multiple types of observed tracking data makes it difficult to identify the flight termination condition. Therefore, a fusion tracking filter handling the multiple tracking data is necessary for the flight safety system. This research developed a simulation software for generating multiple types of launch vehicle tracking data, and then processed the data with fusion filters.

  • PDF