• 제목/요약/키워드: In-Feed Grinding Machine

검색결과 40건 처리시간 0.022초

내륜 연삭에 관한 연구 (A Study on Grinding for Inner Race)

  • 김우강;김건희
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.46-49
    • /
    • 2011
  • The grinding is a popular process for studying constant velocity joint and process in automobile industry. In this study, The study gives the data of wheel type and grinding of inner race is developed. As a result I obtained the data of grinding conditions makes good surface roughness get a grinding conditions. The grinding characteristics and conditions of inner race were investigated with respect to grinding feed, cutting depth, grinding time. The results were suddenly increased and the detailed surfaces were extremely obtained. Grinding condition was big more affected by grinding time, grinding speed and grinding depth.

페룰의 연삭 가공 특성에 관한 연구 (A Study of Grinding Characteristic of Ferrule)

  • 이석우;최헌종;최영재;안건준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.974-979
    • /
    • 2003
  • As recently optical communication industry is developed, request of optical communication part is increased. Ferrule is very important part which determines transmission efficiency and quality of information in the optical communication part. Most of ferrule processes are grinding which request high processing precision. Particularly, concentricity and cylindricity of inner and outer diameter is very important. The co-axle grinding process of ferrule is to make its concentricity all of uniform before centerless grinding. Surface integrity of ferrule is affected by kind of grinding wheels, grinding conditions, and characteristic of workpiece and equipment. In this study, surface integrity of workpiece according to change of grinding wheel speed, feed rate, regulating wheel speed and grinding force is investigate to improve the concentricity and roundness of ferrule from many experiments.

  • PDF

탄소섬유 에폭시 복합재료 연삭온도에 의한 연삭특성 (A Study on the Grinding Characteristics of the Carbon Fiber Epoxy Composite Material Grinding Temperature)

  • 한흥삼;이동주
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.65-70
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently requires cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite surface grinding were suggested.

  • PDF

Model-based process control for precision CNC machining for space optical materials

  • Han, Jeong-yeol;Kim, Sug-whan;Kim, Keun-hee;Kim, Hyun-bae;Kim, Dae-wook;Kim, Ju-whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.26-26
    • /
    • 2003
  • During fabrication process for the large space optical surfaces, the traditional bound abrasive grinding with bronze bond cupped diamond wheel tools leaves the machine marks and the subsurface damage to be removed by subsequent loose abrasive lapping. We explored a new grinding technique for efficient quantitative control of precision CNC grinding for space optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and a range of resin bond diamond tools. The machining parameters such as grit number, tool rotation speed, work-piece rotation speed, depth of cut and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis methods. The effectiveness of the grinding prediction model was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment details, the results and implications are presented.

  • PDF

Zerodur의 초정밀 연삭 특성에 관한 연구 (A Study on the Characteristics on Ultra-Precision Grinding of a Zerodur)

  • 김건희;박요창
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.13-17
    • /
    • 2005
  • We explored a new rough grinding technique on optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and a range of diamond resin bond wheel. The grinding parameters such as workpiece rotation speed, depth of cut and feed rate were altered while grinding the workpiece surfaces of 20mm in diameter. Surface roughness was measured by Form Talysurf series2. Our target is to define grinding conditions producing the surface roughness smaller than $0.2{\mu}m$ Ra.

  • PDF

지르코니아 세라믹스 페룰의 연삭 특성 (Grinding Characteristic of ZrO$_2$ Ceramics Ferrule)

  • 이석우;최영재;김기환;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1911-1915
    • /
    • 2003
  • Today optical communication industry is developed; demand of optical communication part is increased. ZrO$_2$ ceramic ferrule is very significant part which determines transmission efficiency and quality of information in the optical communication part by connector of optical fibers. Being different from metal grinding, material removal through brittle fracture plays an important role in ZrO$_2$ ceramic grinding. Most of ZrO$_2$ ceramic ferrule processes are grinding which request high processing precision. Particularly, concentricity and cylindricity of inner and outer diameter are very important. The co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. Surface integrity of ZrO$_2$ ceramic ferrule is affected by grinding conditions, and equipment. In this study, surface integrity of workpiece according to such as a change of grinding wheel speed, feed rate, regulating wheel speed and grinding force is investigate to improve the concentricity and roundness of ZrO$_2$ ceramic ferrule from many experiments. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

Ultrasonically Assisted Grinding for Mirror Surface Finishing of Dies with Electroplated Diamond Tools

  • Isobe, Hiromi;Hara, Keisuke;Kyusojin, Akira;Okada, Manabu;Yoshihara, Hideo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.38-43
    • /
    • 2007
  • This paper describes ultrasonically assisted grinding used to obtain a glossy surface quickly and precisely. High-quality surfaces are required for plastic injection molding dies used in the production of plastic parts such as dials for cellular phones. Traditionally, in order to finish the dies, manual polishing by a skilled worker has been required after the machining processes, such as electro discharge machining (EDM), which leaves an affected layer, and milling, which leaves tooling marks. However, manual polishing causes detrimental geometrical deviations of the die and consumes several days to finish a die surface. Therefore, a machining process for finishing dies without manual polishing to improve the surface roughness and form accuracy would be extremely valuable. In this study, a 3D positioning machine equipped with an ultrasonic spindle was used to conduct grinding experiments. An electroplated diamond tool was used for these experiments. Generally, diamond tools cannot grind steel because of excessive wear as a result of carbon atoms diffusing into bulk steel and chips. However, ultrasonically assisted grinding can achieve a fine surface (roughness Rz of $0.4{\mu}m$) on die steel without severe tool wear. The final aim of this study is to realize mirror surface grinding for injection molding dies without manual polishing. To do this, it is necessary to fabricate an electroplated diamond tool with high form accuracy and low run-out. This paper describes a tool-making method for high precision grinding and the grinding performance of a self-electroplated tool. The ground surface textures, tool performance and tool life were investigated A ground surface roughness Rz of 0.14 um was achieved Our results show that the spindle speed, feed rate and cross feed affected the surface texture. One tool could finish $5000mm^2$ of die steel surface without any deterioration of the ground surface roughness.

탄소 섬유 에폭시 복합재료의 절단 연삭 특성 (Cut-off Grinding Characteristics of the Carbon Fiber Epoxy Composite Materials)

  • 김포진;최진경;이대길
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.338-346
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites are frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements . During the composite machining operations such as cutting and grinding, the temperature at the cutting point may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the cutting point during cut-off grinding of carbon fiber epoxy composites was measured. The cutting force and surface roughness were also measured to investigate the cut-off grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed and feed rate. From the experimental investigation, the optimal conditions for the composite cut-off grinding were suggested.

원통연삭가공시 반도체 레이저 빔을 이용한 금속표면거칠기의 인프로세스 측정 (A Study on the In-process Measurement of Metallic Surface roughness in Cylindrical Grinding by Diode Laser)

  • 김희남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 춘계학술대회 논문집
    • /
    • pp.1-8
    • /
    • 1995
  • This paper proposed a simple method for measuring surface roughness of ground surface. utilizing non-contact in-process measuring system using the diode laser. The measurement system is consisted of a laser unit with a diode laser and a cylindrical lens a detecting unit with polygon mirror and CCD array sensor. and a signal processing unit with a computer and device. During operation, this measuring system can provide information on surface roughness in the measuring distance with a single sampling and simultanilusly monitor the state of the grind wheel. The experimental results, showed that the increase of the feed rate and the dressing speed an caused increase in the surface roughness and when the surface roughness is 4Rmax-10Rmax, the cutting speed is 1653m/min-1665m/min. the feed rate is 0.2m/min-0.9m/min, the dressing speed is 0.2mm/rev-0.4mm/rev, the stylus method and the in-process method can be obtained the same results. thus under limited working conditions. using the proposed system. the surface roughness of the ground surface during cylindrical grinding can be obtained through the in-process measurement method using the diode laser.

  • PDF

전해 인프로세스 드레싱을 이용한 Optical glass계의 경면연삭에 관한 연구 (A Study on the Mirror Surface Grinding of Optical Glass Utilizing Electrolytic In-Process Dressing)

  • 조주현;원종호;박원규;이진오;김민수;김성수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.410-415
    • /
    • 2003
  • Electrolytic In-process Dressing (ELID) technique for metal bonded diamond grinding wheel has been developed for mirror surface grinding of hard and brittle materials. This study process optical glass in using Electrolytic In-process Dressing. In using to main variable wheel speed (400rpm~2000rpm),feed rate (5$\mu\textrm{m}$/min~25$\mu\textrm{m}$/min),depth of cut (3$\mu\textrm{m}$~5$\mu\textrm{m}$),dressing and spray. We measured surface roughness in representative brittle materials

  • PDF