• Title/Summary/Keyword: In vivo monitoring

Search Result 123, Processing Time 0.032 seconds

Real-Time Monitoring of Catheter-Related Biofilm Infection in Mice

  • Liu, Xu;Yin, Hong;Xu, Xianxing;Cheng, Yuanguo;Cai, Yun;Wang, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1728-1733
    • /
    • 2015
  • This study was done to establish a mouse model for catheter-related biofilm infection suitable to bioluminescence imaging (BLI). Biofilm formation of Pseudomonas aeruginosa (P. aeruginosa) Xen5 grown on catheter disks in vitro and in an implanted mouse model was real-time monitored during a 7-day study period using BLI. The numbers of integrated brightness (IB) and viable bacterial count (VBC) in the biofilm disks in vitro were highest at 24 h after inoculation; the IB of biofilm in vivo was increased until 24 h after implantation. A statistical correlation was observed between IB and VBC in vitro by linear regression analysis. The actual VBC value in vivo can be estimated accurately by IB without sacrifice. In addition, we monitored the change in white blood cells (WBCs) during infection. The number of WBCs on day 7 was significantly higher in the infection group than in the control group. This study indicates that BLI is a simple, fast, and sensitive method to measure catheter biofilm infection in mice.

The Implementation of Wireless Bio-signal Monitoring System for U - healthcare (유비쿼터스 헬스케어를 위한 무선 생체신호 감시 시스템 설계)

  • Lee, Seok-Hee;Ryu, Geun-Taek
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.82-88
    • /
    • 2012
  • In this paper, using the Android-based mobile platform designed and integrated U-healthcare systems for personal health care system is proposed. Integrated Biometric systems, electrocardiogram (ECG), oxygen saturation, blood pressure, respiration, body temperature, such as measuring vital signs throughout the module and signal processing biometric information through wireless communication module based on the Android mobile platform is transmitted to the gateway. Biometric data transmitted from a mobile health monitoring system, or transmitted to the server of U-healthcare was designed. By implementing vital signs monitoring system has been measured in vivo by monitoring data to determine current health status of caregivers had the advantage of being able to guarantee mobility respectively. This system is designed as personal health management and monitoring system for emergency patients will be helpful in the development looks U-healthcare system.

The Accuracy of the Calculated Dose for a Cardiac Implantable Electronic Device

  • Sung, Jiwon;Son, Jaeman;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.150-154
    • /
    • 2019
  • The objective of this study is to monitor the radiation doses delivered to a cardiac implantable electronic device (CIED) by comparing the absorbed doses calculated by a commercial treatment planning system (TPS) to those measured by an in vivo dosimeter. Accurate monitoring of the radiation absorbed by a CIED during radiotherapy is necessary to prevent damage to the device. We conducted this study on three patients, who had the CIED inserted and were to be treated with radiotherapy. Treatment plans were generated using the Eclipse system, with a progressive resolution photon optimizer algorithm and the Acuros XB dose calculation algorithm. Measurements were performed on the patients using optically stimulated luminescence detectors placed on the skin, near the CIED. The results showed that the calculated doses from the TPS were up to 5 times lower than the measured doses. Therefore, it is recommended that in vivo dosimetry be conducted during radiotherapy for CIED patients to prevent damage to the CIED.

NEAR INFRARED BIO-SPECTROSCOPY : APPROACHES FOR MEASUREMENTS IN CRITICAL CARE

  • Burns, David
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.2102-2102
    • /
    • 2001
  • Near infrared, diffuse reflectance spectroscopy has shown significant potential for in vitro and in vivo assessment of metabolic status. However, the complexity of living samples can lead to ambiguous results. This presentation will focus on methods that provide controls for scattering and absorption estimation in tissue. For robust estimations, normalization procedures will be shown which can greatly improve interpretability of results. Normalization based on time, location and spectral property will be shown with data from models, tissue phantoms and in vivo measurements. In particular, interpretation of NIR spectra associated with major respiratory constituents will be examined. Measurement of constituents such as hemoglobin, myoglobin, tissue edema, and lactate will be shown. Results suggest that NIR may provide a valuable tool for physiological monitoring in critical care research and practice.

  • PDF

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1613-1617
    • /
    • 2006
  • Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.

FOLDING-UNFOLDING KINETICS OF HUMAN $\alpha_1$-ANTITRYPSIN: CHARACTERIZATION OF A KINETIC INTERMEDIATE THAT IS BRANCHED TO THE NATIVE AND AGGREGATION FORM

  • Kim, Daeyou;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.13-13
    • /
    • 1996
  • Aggregation of human $\alpha$$_1$-antitrypsin ($\alpha$$_1$-AT) during folding occurs both in vitro and in vivo. In vivo aggregates of mutant $\alpha$$_1$-AT such as $M_{malton}$ (Phe52 deleted) and Z (Glu342 longrightarrowLys) variants have pathological consequences. In order to analyze the process of $\alpha$$_1$-AT aggregation in detail, the folding-unfolding kinetics of $\alpha$$_1$-AT was examined by monitoring intrinsic Trp fluorescence and ANS binding. (omitted)

  • PDF

Applications of Near Infrared Reflectance Spectroscopy(NIRS) in Forage Evaluation (조사료 가치 평가를 위한 근적외선 분광법(NIRS)의 활용)

  • 박형수;이종경;이효원
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.1
    • /
    • pp.81-90
    • /
    • 2004
  • Farmers need timely information on the nutritional status of their animals and the nutritive value of pastures and supplementary feeds if they are to apply successfully this existing nutritional information. Near infrared reflectance(NIR) spectroscopy has been used over the last forty years to analyse accurately protein, fiber, and other organic components in animal foods. NIR spectroscopy is a rapid, non-destructive, and non-polluting technology. When properly calibrated, NIR spectroscopy is used successfully with both concentrate and forage feeds. NIR methods predict in vitro digestibility accurately and precisely, and can predict in vivo digestibility at least as well as conventional "wet chemistry" methods such as in vivo digestion or the pepsin-cellulase method, and much more rapidly. NIR technology has been applied to the routine monitoring (through analysis of feces samples) of the nutritional status of cattle and other grazing animals. This report reviews the use of near infrared reflectance(NIR) spectroscopy to monitor the nutritive value of animal feeds and the nutritional status of grazing animals.

Ex vivo Cytotoxicity of the Bacillus thuringiensis Cry4B δ-Endotoxin to Isolated Midguts of Aedes aegypti Larvae

  • Barusrux, Sahawat;Sramala, Issara;Katzenmeier, Gerd;Bunyaratvej, Ahnond;Panyim, Sakol;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.294-298
    • /
    • 2003
  • The pathological effect of the Bacillus thuringiensis Cry $\delta$-endotoxins on susceptible insect larvae had extensive damage on the midgut epithelial cells. In this study, an ex vivo assay was devised for assessing the insecticidal potency of the cloned Cry4B mosquito-larvicidal protein that is expressed in Escherichia coli. Determination of toxicity was carried out by using a cell viability assay on the midguts that were dissected from 5-day old Aedes aegypti mosquito larvae. After incubation with the toxin proteins, the number of viable epithelial cells was determined photometrically by monitoring the quantity of the bioreduced formazan product at 490 nm. The results showed that the 65-kDa trypsin-activated Cry4B toxin exhibited toxic potency ca. 3.5 times higher than the 130-kDa Cry4B protoxin. However, the trypsin-treated products of the non-bioactive Cry4B mutant (R158A) and the lepidopteran-specific Cry1Aa toxin displayed relatively no ex vivo activity on the mosquito-larval midguts. The ex vivo cytotoxicity studies presented here confirms data that was obtained in bioassays.

Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model

  • Wang, Sibo;Yang, Tao;Zhang, Xuyong;Xia, Jie;Guo, Jun;Wang, Xiaoyi;Hou, Jixue;Zhang, Hongwei;Chen, Xueling;Wu, Xiangwei
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.3
    • /
    • pp.291-299
    • /
    • 2016
  • Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.

Modulation of Bee Venom on Th1/Th2 Cell Lineage Development (봉독 추출액이 helper T cell 분화에 미치는 영향)

  • Ko Eun Jung;Nam Sang Soo;Hong Moo Chang;Shin Min Kyu;Bae Hyun Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1347-1355
    • /
    • 2004
  • In this study, the immunological effect of a traditional Korea herbal acupuncture, that has been widely used for the treatment of various immunological disorders including inflammation in Korea, was examined in vitro and in vivo. In our previous study demonstrated that BV increased the expression of IFN-γ mRNA, that plays pivotal role in T cell response. This study was designated to evaluate the effect of BV on helper T cell development by monitoring Th1/Th2 specific cytokine secretion patterns in artificially induced Th1/Th2 polarized condition and in vivo. The results demonstrated that BV didn't have mitogenic effects on the unstimulated CD4+ T cell, but increased the CD4+ T cell proliferation upon activation with anti-CD3/CD28 antibody. The Th1 cells were over-populated dramatically in Th1 driven condition with BV treatment, while the Th2 cells were increased slightly in Th2 skewed condition. Furthermore, under Th1-skewed conditions, the level of IFN-γ was considerably increased with BV treatment. Besides, the expression of T-bet, a transcription factor that plays pivotal role in Th1 lineage programming, was increased with BV treatment. The expressions of IFN-γ and T-bet were also significantly increased in vivo. The results that Th1 specific cytokine secretion were considerably increased and Th2 specific cytokine secretion were not significantly changed in vitro and in vivo indicated that BV enhances Th1 lineage development, Therefore, these results suggest that BV might be desirable agent for correction of Th1 dominant pathological disorders.