• Title/Summary/Keyword: In vitro metabolism

Search Result 508, Processing Time 0.027 seconds

Effects of Cadmium on Superoxide Radical Superoxide Dismutase, Catalase and ATPase Activit in liver, Kidney and Testicle of Rats in Vitro and in Vivo (시험관내 및 생체내로 투여한 카드뮴이 랏트의 간, 신 및 고환조직 내의 Superoxide Radical, Superoxide Dismutase, Catalase 및 ATPase 활성도에 미치는 영향)

  • Kim, Sung-Moo;Chung, Kyou-Chull
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.4 s.32
    • /
    • pp.371-390
    • /
    • 1990
  • Production of free radicals of superoxide anion in tissues by cadmium, activities of superoxide dismutase and catalase to protect tissue damages caused by the free radicals and ATPase that plays an important role in energy metabolism at cellular level were investigated. Experiments in vivo were conducted with liver, kidney and testicle tissue homogenates of rats adding $0.05{\sim}0.50mM$ cadmium chloride, and in vivo experiments administering single dose of 5 mg of cadmium/kg of body weight in 0.1% cadmium chloride solution intraperitoneally 48 hours prior to evisceration. Production of superoxide radicals in liver and testicle increased with addition of cadmium in vitro, but not in kidney. In vivo experiments, however, superoxide radicals slightly increased in liver and kidney but not in testicle. Superoxide dismutase (Cu, Zn-SOD and Mn-SOD), catalase and ATPase (total, $Mg^{++}-\;&\;Na^+,\;K^+-$) activity decreased in the presence of cadimium in dose dependent manner. Reduction of these enzyme activities varied not only with dosage of cadmium but also with type of tissue and between in vitro and in vivo experiment.

  • PDF

Commonly Used Surfactant, Tween 80, Improves Absorption of P-Glycoprotein Substrate, Digoxin, in Rats

  • Zhang, Hongjian;Yao, Ming;Morrison, Richard-A.;Chong, Sae-Ho
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.768-772
    • /
    • 2003
  • Tween 80 (Polysorbate 80) is a hydrophilic nonionic surfactant commonly used as an ingredient in dosing vehicles for pre-clinical in vivo studies (e.g., pharmacokinetic studies, etc.). Tween 80 increased apical to basolateral permeability of digoxin in Caco-2 cells suggesting that Tween 80 is an in vitro inhibitor of P-gp. The overall objective of the present study was to investigate whether an inhibition of P-gp by Tween 80 can potentially influence in vivo absorption of P-gp substrates by evaluating the effect of Tween 80 on the disposition of digoxin (a model P-gp substrate with minimum metabolism) after oral administration in rats. Rats were dosed orally with digoxin (0.2 mg/kg) formulated in ethanol (40%, v/v) and saline mixture with and without Tween 80 (1 or 10%, v/v). Digoxin oral AUC increased 30 and 61% when dosed in 1 % and 10% Tween 80, respectively, compared to control (P<0.05). To further examine whether the increase in digoxin AUC after oral administration of Tween 80 is due, in part, to a systemic inhibition of digoxin excretion in addition to an inhibition of P-gp in the GI tract, a separate group of rats received digoxin intravenously (0.2 mg/kg) and Tween 80 (10% v/v) orally. No significant changes in digoxin IV AUC was noted when Tween 80 was administered orally. In conclusion, Tween 80 significantly increased digoxin AUC and Cmax after oral administration, and the increased AUC is likely to be due to an inhibition of P-gp in the gut (i.e., improved absorption). Therefore, Tween 80 is likely to improve systemic exposure of P-gp substrates after oral administration. Comparing AUC after oral administration with and without Tween 80 may be a viable strategy in evaluating whether oral absorption of P-gp substrates is potentially limited by P-gp in the gut.

Effects of Kisspeptin-10 on Lipid Metabolism in Cultured Chicken Hepatocytes

  • Wu, J.;Fu, W.;Huang, Y.;Ni, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1229-1236
    • /
    • 2012
  • Our previous studies showed that kisspeptin-10 (Kp-10) injected in vivo can markedly increase lipid anabolism in liver of quails. In order to investigate the direct effect of Kp-10 on lipid metabolism of hepatocytes in birds, cells were separated from embryos livers and cultured in vitro with 0, 100 and 1,000 nM Kp-10, respectively. The results showed that after 24 h treatment, cells viability was not affected by 100 nM Kp-10, but showed a mild decrease with 1,000 nM Kp-10 compared to the control cells. Based on the results of the cell viability, 100 nM dosage of Kp-10 was selected for the further study and analysis. Compared with control cells, total cholesterol (Tch) contents in 100 nM treated cells were increased by 51.23%, but did not reach statistical significance, while the level of triglyceride (TG), high density of lipoprotein-cholesterol (HDL-C) and low density of lipoprotein-cholesterol (LDL-C) were significantly increased. Real-time PCR results showed that ApoVLDL-II mRNA expression had a tendency to increase, genes including sterol regulatory element-binding protein-1 (SREBP-1), acetyl coenzyme A carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT1), 3-hydroxyl-3-methylglutaryl-coenzyme A reductases (HMGCR) and stearyl coenzyme A dehydrogenase-1 (SCD1) mRNA in hepatocytes were significantly down-regulated by 100 nM Kp-10. However, contrary to its gene expression, SREBP-1 protein expression was significantly up-regulated by 100 nM Kp-10. Some of the significant correlations in mRNA expression were found between genes encoding hepatic factors or enzymes involved in lipid metabolism in liver of birds. These results indicate that Kp-10 stimulates lipid synthesis directly in primary cultured hepatocytes of chickens.

The Effects of Copper Source and Concentration on Lipid Metabolism in Growing and Finishing Angus Steers

  • Johnson, L.R.;Engle, T.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1131-1136
    • /
    • 2003
  • Forty-eight individually fed Angus steers (body weight $220kg{\pm}9.1$) were utilized to investigate the effects of copper (Cu) source and concentration on lipid metabolism and carcass quality. Steers were stratified by body weight and initial liver Cu concentration and randomly assigned to one of five groups. Groups were then randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu); 2) 10 mg Cu/kg DM from $CuSO_4$; 3) 10 mg Cu/kg DM from a Cu amino acid complex (Availa Cu) 4) 20 mg Cu/kg DM from $CuSO_4$; and 5) 20 mg Cu/kg DM from Availa Cu. Steers were fed a corn-alfalfa-based growing diet for 56 d. Steers were then switched to a high concentrate finishing diet for 145 d. On day 74 of the finishing phase subcutaneous adipose tissue biopsies were obtained from three steers/treatment to determine basal and stimulated lipolytic rates in vitro. Steers were then slaughtered after receiving the finishing diet for 145 d. Control steers tended (p<0.12) to have lower ceruloplasmin (Cp) activity than Cu supplemented steers. Steers receiving 20 mg Cu/kg DM from Availa Cu had higher (p<0.03) Cp activity than steers receiving 20 mg Cu/kg DM from $CuSO_4$. Plasma non-esterified fatty acids were similar across treatments. Steers receiving 10 mg Cu/kg DM from Availa Cu had higher (p<0.02) total plasma cholesterol concentrations relative to steers receiving 10 mg Cu/kg DM from $CuSO_4$. Steers receiving 20 mg Cu/kg DM from Availa Cu had lower (p<0.03) plasma triglyceride concentrations than steers supplemented with 20 mg Cu/kg DM from $CuSO_4$. Fatty acid profile of longissimus muscle was similar across treatments. Backfat depth tended (p<0.18) to be lower in Cu supplemented steers relative to controls. Steers supplemented with 20 mg Cu/kg DM from Availa Cu had heavier (p<0.03) hot carcass weights and a greater (p<0.02) dressing percentage than steers supplemented with 20 mg Cu/kg DM from $CuSO_4$. Furthermore, in vitro basal (p<0.06) and epinephrine stimulated (p<0.04) lipolytic rates of subcutaneous adipose tissue were higher in Cu supplemented steers relative to controls. The results of this study suggest that Cu supplementation has minimal effects on blood and lean tissue lipid profile. However, it appears that Cu may play a role in lipid metabolism in subcutaneous adipose tissue.

A Development of Methods for detecting Immunosuppression induced by Cyclophosphamide in vitro (Cyclophosphamide의 면역독성 검출을 위한 in vitro 시험법의 개발)

  • ;Michael P. Holsapple
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.236-243
    • /
    • 1994
  • A splenocyte culture system supplemented with liver microsomes was developed to detect immunotoxic chemicals which require metabolic activation using cyclophosphamide as a positive standard. When liver microsomes were added to splenocyte cultures isolated from female B6C3Fl mice, the proliferation of splenocytes by lipopolysaccharide (LPS) was increased and the proliferation by concanavalin A (Con A) was decreased. However, when compared with each corresponding control, cyclophophamide was successfully activated to metabolites capable of suppressing Iymphoproliferative responses. This suppression was clearly dependent upon the amounts of microsomes added and/or the concentration of cyclophosphamide exposed. In these cultures, the proliferation of splenocytes was suppressed when the cells were exposed to cyclophosphamide on the day of culture initiation. On the other hand, microsome was responsible for the increase in LPS mitogenicity and NADPH was responsible for the decrease in Con A mitogenicity. Finally, our present culture system was compared with the hepatocyte-splenocyte coculture system which we had developed earlier. We found that the hepatocyte-splenocyte coculture was better able to activate cyclophosphamide to metabolites capable of suppressing the antibody response to sheep erythrocytes. Although our present culture system was relatively poor to activate cyclophosphamide in cultures for antibody response, it will be useful as a simple screening method to detect suppression of certain in vitro immunotoxic parameters like LPS mitogenicity by chemicals which require metabolism.

  • PDF

Metabolism of Liriodendrin and Syringin by Human Intestinal Bacteria and their Rlation to in Vitro Cytootoxicity

  • Kim, Dong-Hyun;Lee, Kyung-Tae;Bae, Eun-Ah;Han, Myung-Joo;Park, Hee-Juhn
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.30-34
    • /
    • 1999
  • When liriodendrin or syringin was incubated for 24 h with human intestinal bacteria, two metabolites, (+)-syringaresinol$\beta$--D-glucopyranoside and (+)-syringaresionl, from liriodendrin and one metabolite, synapyl alcohol, from syringin were produced. The metabolic time course of liriodendrin was as follows: at early time liriodendrin was converted to (+)-syringaresinol-$\beta$-D-glucopyranoside, and then (+)-syringaresinol. The in vitro cytotoxicities of these metabolites, (+)-syringaresinol and synapyl alcohol, were superior to those of liriodendrin and syringin.

  • PDF

Effect of phenobarbital sodium and 3-methylcholanthrene on metabolism in vitro and toxicity of $^{14}C$-carbofuran in rat (쥐에서 phenobarbital sodium 및 3-methylcholanthrene이 $^{14}C$-carbofuran의 독성과 in vitro 대사에 미치는 영향)

  • Han, Seong-Soo;Rim, Yo-Sup
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.29-38
    • /
    • 1998
  • In order to elucidate the effect of phenobarbital sodium(PB) and 3-methylcholanthrene(3-MC) on metabolism in vitro and toxicity of $^{14}C$-carbofuran in rat, they were administered by the chemicals, alone or in combination, and their survival ratios and metabolites were investigated. The $LD_{50}$(96 hrs) value of carbofuran to rats was 6.9 mg/kg. The toxicities of the major metabolites were in the decreasing order of 3-hydroxycarbofuran, 3-ketocarbofuran, 3-hydroxycarbofuran phenol and were much lower than that of the parent compound. When the rats were orally administered by the dose of carbofuran alone, 8.4 mg/kg, the survival ratio was 0%, whereas that was raised up to $60{\sim}80%$ with 20 mg/kg of PB or 3-MC, and 100% with 60 mg/kg of PB or 3-MC. Their metabolism in vitro occurred in the microsomal fraction. In case of carbofuran alone, the major metabolite was 3-hydroxycarbofuran. When carbofuran with PB or 3-MC, on the other hand, was treated, it was 3-ketocarbofuran. In addition, when the co-factor(NADP+G-6-P+G-6-P-DG) was added to the microsomal fraction(phase I system), and a mixture of NADPH+GSH to the 105,000g supernatant(phase II system) taken by carbofuran alone, each metabolites were produced by the maximum levels, respectively. In case of the carbofuran treatment with PB or 3-MC, the microsomal fraction of phase I system produced the maximum levels of metabolites, as in the treatment of carbofuran alone, whereas the 105,000g supernatant supplemented with the co-factor NADPH+FAD(phase II system) was brought about the maximum production of metabolites. The ratio of the formation of metabolites was 2 to 3 times higher in the combined treatment of carbofuran with PB or 3-MC than in the treatment of carbofuran alone.

  • PDF

Mammary alveolar cell as in vitro evaluation system for casein gene expression involved in glucose level

  • Heo, Young Tae;Ha, Woo Tae;Lee, Ran;Lee, Won-Young;Jeong, Ha Yeon;Hwang, Kyu Chan;Song, Hyuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.878-885
    • /
    • 2017
  • Objective: Glucose is an essential fuel in the energy metabolism and synthesis pathways of all mammalian cells. In lactating animals, glucose is the major precursor for lactose and is a substrate for the synthesis of milk proteins and fat in mammary secretory (alveolar) epithelial cells. However, clear utilization of glucose in mammary cells during lactogenesis is still unknown, due to the lack of in vitro analyzing models. Therefore, the objective of this study was to test the reliability of the mammary alveolar (MAC-T) cell as an in vitro study model for glucose metabolism and lactating system. Methods: Undifferentiated MAC-T cells were cultured in three types of Dulbecco's modified Eagle's medium with varying levels of glucose (no-glucose: 0 g/L, low-glucose: 1 g/L, and high-glucose: 4.5 g/L) for 8 d, after which differentiation to casein secretion was induced. Cell proliferation and expression levels of apoptotic genes, Insulin like growth factor-1 (IGF1) receptor, oxytocin receptor, ${\alpha}S1$, ${\alpha}S2$, and ${\beta}$ casein genes were analyzed at 1, 2, 4, and 8 d after differentiation. Results: The proliferation of MAC-T cells with high-glucose treatment was seen to be significantly higher. Expression of apoptotic genes was not affected in any group. However, expression levels of the mammary development related gene (IGF1 receptor) and lactation related gene (oxytocin receptor) were significantly higher in the low-glucose group. Expressions of ${\alpha}S1-casein$, ${\alpha}S2-casein$, and ${\beta}-casein$ were also higher in the low-glucose treated group as compared to that in the no-glucose and high-glucose groups. Conclusion: The results demonstrated that although a high-glucose environment increases cell proliferation in MAC-T cells, a low-glucose treatment to MAC-T cells induces higher expression of casein genes. Our results suggest that the MAC-T cells may be used as an in vitro model to analyze mammary cell development and lactation connected with precise biological effects.

Mechanism of Phenoxy Compounds as an Endocrine Disrupter (Phenoxy계 화합물의 내분비장애작용 검색 및 기전연구)

  • 김현정;김원대;권택헌;김동현;박영인;동미숙
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.331-339
    • /
    • 2002
  • Phenoxy compounds, 2,4-Dichlorophenol acetoxy acid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a hormonal herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them wing in vivo and in vitro androgenicity assay system. Administration of 2,4-D (50 mg/kg/day, p.o.) or DCP (100 mg/kg/day, p.o.) to rats caused an increase in the tissue weight of ventral prostate, Cowpers gland and glands penis. These increase of androgen-dependent tissues were additively potentiated when rats were simultaneously treated with low dose of testosterone (1 g/kg, s.c.). 2,4-D increased about 350% of the luciferase activity in the PC cells transiently cotransfected phAR and pMMTV-Luc at concentration of $10^{-9}$ M. In 2,4-D or DCP-treated castrated rats, testosterone 6$\beta$-hydroxylase activity was not significantly modulated even when rats were co-treated with testosterone. In vitro incubation of 2,4-D and DCP with microsomes at 50 $\mu$M inhibited testosterone 6$\beta$-hydroxylase activity about 27% and 66% in rat liver microsomes, about 44% and 54% in human liver microsomes and about 50% and 45% in recombinant CYP3A4 system, respectively. The amounts of total testosterone metabolites were reduced about 33% and 75% in rat liver microsomes, 69% and 73% in human liver microsomes and 54% and 64% in recombinant CYP3A4 by 2,4-D or DCP, respectively. Therefore, the additive androgenic effect of 2,4-D or DCP by the co-administration of the low dose of testosterone may be due to the increased plasma level of testosterone by inhibiting the cytochrome P450-mediated metabolism of testosterone. These results collectively suggested that 2,4-D and DCP may act as androgenic endocrine disrupter by binding to the androgen receptor as well as by inhibiting the metabolism of testosterone.